Pregunta
upstudy study bank question image url

2) \( (x+1)^{2}+(y-5)^{2}=4 \)

Ask by Washington Norris. in Uzbekistan
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation \( (x+1)^{2}+(y-5)^{2}=4 \) represents a circle with center at \((-1, 5)\) and a radius of \(2\).

Solución

The equation given is \( (x+1)^{2}+(y-5)^{2}=4 \). This represents a circle in the Cartesian coordinate system. ### Known Conditions: 1. The center of the circle is at the point \((-1, 5)\). 2. The radius of the circle is \( r = \sqrt{4} = 2 \). ### Step-by-Step Explanation: 1. **Identify the center**: The center of the circle can be found from the standard form of the circle's equation, which is \( (x-h)^{2} + (y-k)^{2} = r^{2} \), where \((h, k)\) is the center and \(r\) is the radius. - Here, \(h = -1\) and \(k = 5\), so the center is \((-1, 5)\). 2. **Calculate the radius**: The radius is the square root of the right side of the equation. - Since \(4\) is the right side, the radius \(r = \sqrt{4} = 2\). ### Conclusion: The circle has a center at \((-1, 5)\) and a radius of \(2\). If you need further analysis or specific points on the circle, please let me know!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

This equation represents a circle with its center at the point \((-1, 5)\) and a radius of \(2\). All points \((x, y)\) that satisfy this equation are located exactly \(2\) units away from the center. Picture a cozy little neighborhood around the center point where every house (point) is just a stone's throw away! In real-world applications, this concept of circles is utilized in design, navigation, and even architecture. For instance, when designing a park, planners often ensure that facilities like walking paths or benches maintain a circular layout around a central feature (like a fountain) to create an inviting space. This circular design maximizes accessibility and aesthetic appeal for park visitors!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad