Use the properties of exponents to determine whether the pair of expressions are equivalent. \[ \left(\frac{1}{3}\right)^{4} \text { and }\left(\frac{1}{9}\right)^{2} \] The expressions \( \square \) equal. The expression \( \left(\frac{1}{3}\right)^{4} \) can be rewritten as 3 \( \square \) The expression \( \left(\frac{1}{9}\right)^{2} \) can be rewritten as 9 \( \square \) , which is equal to 3 \( \square \) The expressions have the same base, \( \square \) equal. (Type integers or simplified fractions.)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
The expressions \( \left(\frac{1}{3}\right)^{4} \) and \( \left(\frac{1}{9}\right)^{2} \) can both be simplified using the properties of exponents. First, let's rewrite \( \left(\frac{1}{3}\right)^{4} \): this becomes \( \frac{1^4}{3^4} = \frac{1}{81} \). Now, for \( \left(\frac{1}{9}\right)^{2} \): here, \( 9\) can be expressed as \( 3^2 \), thus \( \left(\frac{1}{9}\right)^{2} = \left(\frac{1}{3^2}\right)^{2} = \frac{1^2}{3^{2 \times 2}} = \frac{1}{3^4} = \frac{1}{81} \). Thus, both \( \left(\frac{1}{3}\right)^{4} \) and \( \left(\frac{1}{9}\right)^{2} \) evaluate to \( \frac{1}{81} \), so the expressions are indeed \( \square \) equal. In conclusion, we can fill in the blanks as follows: - The expression \( \left(\frac{1}{3}\right)^{4} \) can be rewritten as \( \frac{1}{81} \). - The expression \( \left(\frac{1}{9}\right)^{2} \) can be rewritten as \( \frac{1}{81} \). - Both expressions have been shown to be equal; hence, \( \square \) equal.