Pregunta
upstudy study bank question image url

Whe Hawairan language has 12 letters: five vowels and seven consonants, Each of the 12 Hawaran leners are written on a slip of paper and placed in the bag. Aletter is randomly chosen from the bag and then replaced. Then, second lether is randomly chosen from the bag. What is the probability that two vowels are chosen? ( \( \frac{5}{72} \) \( 0 \frac{25}{144} \) \( 0 \frac{7}{12} \) \( \frac{5}{6} \)

Ask by Hobbs Mejia. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability of choosing two vowels is \( \frac{25}{144} \).

Solución

To determine the probability of selecting two vowels from the Hawairan language letters with replacement, follow these steps: 1. **Total Letters:** There are 12 letters in total. 2. **Vowels:** Out of these, 5 are vowels. 3. **Probability of First Vowel:** The probability of selecting a vowel on the first draw is \(\frac{5}{12}\). 4. **Replacement:** Since the letter is replaced, the total number of letters remains 12 for the second draw. 5. **Probability of Second Vowel:** The probability of selecting a vowel on the second draw is also \(\frac{5}{12}\). 6. **Combined Probability:** Multiply the two probabilities together: \[ \frac{5}{12} \times \frac{5}{12} = \frac{25}{144} \] **Therefore, the probability of choosing two vowels is \(\frac{25}{144}\).** **Answer:** \( \frac{25}{144} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the probability of selecting two vowels from the Hawaran language, we first note the number of vowels is 5 and the total number of letters is 12. The probability of choosing a vowel on the first draw is \(\frac{5}{12}\). Since the letter is replaced, the probabilities remain the same for the second draw. Thus, the probability of selecting two vowels is: \[ P(\text{two vowels}) = P(\text{first vowel}) \times P(\text{second vowel}) = \frac{5}{12} \times \frac{5}{12} = \frac{25}{144}. \] So, the correct answer is \( \frac{25}{144} \). If you’re looking at probabilities in a more general context, understanding the concept of replacement in probability is crucial! When we replace the items (letters in this case), it keeps the total amount consistent, which simplifies the calculations. You may also dive deeper into the fundamental counting principle, which can really bring clarity to how we approach similar problems! For some fun, try applying these methods to everyday scenarios! Like, what's the probability of picking two fruits from a basket? Or even how many times you're likely to flip heads with a coin. It’s a great way to make probability relatable and exciting in everyday life!

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad