Pregunta
upstudy study bank question image url

Cancel Done \( \overleftrightarrow{\Delta B} \) RESET (a) Section 3.6 \#42 Use the Guidelines for Graphing Rational Functions to list out the seven characteristics of the graph. You do not need to graph the function.

Ask by Pearson Campos. in the United States
Jan 21,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

When graphing rational functions, consider the following seven key characteristics: 1. **Domain:** All x-values where the function is defined (exclude values that make the denominator zero). 2. **Intercepts:** Points where the graph crosses the x-axis and y-axis. 3. **Vertical Asymptotes:** Lines where the function grows without bound as x approaches certain values. 4. **Horizontal and Oblique Asymptotes:** Lines indicating the end behavior of the function. 5. **Holes (Removable Discontinuities):** Points where the function is undefined due to common factors in numerator and denominator. 6. **Behavior Near Asymptotes:** How the function behaves as it approaches vertical and horizontal asymptotes. 7. **Intervals of Increase and Decrease:** Regions where the function is rising or falling. By analyzing these characteristics, you can effectively graph rational functions without plotting many points.

Solución

When graphing rational functions, it's essential to analyze several key characteristics to understand the behavior and shape of the graph. Here are seven primary characteristics to consider: 1. **Domain:** - **Definition:** The set of all possible input values (x-values) for which the function is defined. - **Considerations:** For rational functions, exclude values that make the denominator zero, as these will cause the function to be undefined. 2. **Intercepts:** - **x-intercepts:** Points where the graph crosses the x-axis. Found by setting the numerator equal to zero and solving for x. - **y-intercept:** The point where the graph crosses the y-axis. Found by evaluating the function at x = 0. 3. **Vertical Asymptotes:** - **Definition:** Lines where the function grows without bound (approaches infinity or negative infinity) as x approaches a certain value. - **Identification:** Determine the values of x that make the denominator zero (and are not canceled out by the numerator). 4. **Horizontal and Oblique Asymptotes:** - **Horizontal Asymptote:** Indicates the end behavior of the function as x approaches positive or negative infinity. - If the degree of the numerator is less than the degree of the denominator, the horizontal asymptote is y = 0. - If the degrees are equal, the asymptote is y = (leading coefficient of numerator) / (leading coefficient of denominator). - **Oblique (Slant) Asymptote:** If the degree of the numerator is exactly one more than the degree of the denominator, perform polynomial long division to find the oblique asymptote. 5. **Holes (Removable Discontinuities):** - **Definition:** Points where both the numerator and denominator are zero, resulting in an undefined point that can be "filled in." - **Identification:** Factor the numerator and denominator to find and cancel common factors. The x-value that was canceled indicates the hole. 6. **Behavior Near Asymptotes:** - **Vertical Asymptotes:** Analyze how the function behaves as it approaches the asymptote from the left and right (e.g., approaching positive or negative infinity). - **Horizontal/Oblique Asymptotes:** Determine how the function behaves as x approaches infinity or negative infinity, ensuring it aligns with the asymptote. 7. **Intervals of Increase and Decrease (Optional but Useful):** - **Definition:** Regions where the function is rising or falling. - **Analysis:** Use derivatives to determine where the function is increasing or decreasing, which aids in accurately sketching the graph. By systematically analyzing these seven characteristics, you can effectively graph rational functions and understand their key features without the need for plotting numerous points.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To analyze the graph of a rational function like \( \overleftrightarrow{\Delta B} \), you'll want to consider these seven characteristics: identify any vertical asymptotes by finding the x-values where the denominator equals zero (excluding holes); determine horizontal or oblique asymptotes based on the degrees of the numerator and denominator; locate any intercepts by solving for when the numerator equals zero (x-intercepts) and the equation equals zero (y-intercept); examine any holes that occur from common factors in the numerator and denominator; classify the end behavior of the function; check for continuity in the domain by identifying restrictions; and finally, analyze any behavior near the asymptotes for insights on the curve’s approach. Each of these characteristics plays a pivotal role in understanding how the rational function behaves. For example, vertical asymptotes signify where the function approaches infinity, while horizontal asymptotes help predict the function’s values as x approaches large magnitudes. By carefully assessing these features, one can develop a comprehensive understanding of the function's overall behavior, even without a graph in hand!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad