Pregunta
upstudy study bank question image url

Consider the system of equations. \( 3 x+5 y=2 \) \( y=\frac{2}{3} x-\frac{14}{3} \) What is the solution to the given system of equations? \( (1,-2) \) \( (0,-4) \) \( (7,0) \)

Ask by Rodriguez Pollard. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The correct solution is \( (4, -2) \).

Solución

Let's solve the given system of equations to find the correct solution. **Given Equations:** 1. \( 3x + 5y = 2 \) 2. \( y = \frac{2}{3}x - \frac{14}{3} \) **Step 1: Substitute Equation 2 into Equation 1** Replace \( y \) in the first equation with the expression from the second equation: \[ 3x + 5\left(\frac{2}{3}x - \frac{14}{3}\right) = 2 \] **Step 2: Simplify the Equation** \[ 3x + \frac{10}{3}x - \frac{70}{3} = 2 \] Multiply every term by 3 to eliminate the denominators: \[ 9x + 10x - 70 = 6 \] Combine like terms: \[ 19x - 70 = 6 \] Add 70 to both sides: \[ 19x = 76 \] Divide by 19: \[ x = 4 \] **Step 3: Find \( y \)** Substitute \( x = 4 \) back into Equation 2: \[ y = \frac{2}{3}(4) - \frac{14}{3} = \frac{8}{3} - \frac{14}{3} = -\frac{6}{3} = -2 \] **Solution:** \[ (x, y) = (4, -2) \] **Verification of Given Options:** 1. **Option (1, -2):** - Substitute into Equation 1: \( 3(1) + 5(-2) = 3 - 10 = -7 \neq 2 \) → **Does not satisfy.** 2. **Option (0, -4):** - Substitute into Equation 1: \( 3(0) + 5(-4) = 0 - 20 = -20 \neq 2 \) → **Does not satisfy.** 3. **Option (7, 0):** - Substitute into Equation 1: \( 3(7) + 5(0) = 21 + 0 = 21 \neq 2 \) → **Does not satisfy.** None of the provided options \((1, -2)\), \((0, -4)\), or \((7, 0)\) satisfy both equations in the system. **Correct Solution:** \[ (4, -2) \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the system of equations, we can substitute the second equation into the first equation. The first equation \(3x + 5y = 2\) can be rewritten with \(y\) from the second equation: Substituting \(y = \frac{2}{3}x - \frac{14}{3}\) into \(3x + 5y = 2\) gives: \(3x + 5\left(\frac{2}{3}x - \frac{14}{3}\right) = 2\). Simplifying this will lead us to a single variable equation that we can solve for \(x\) and subsequently find \(y\). In the world of equations, remember that when you have two lines in a graph, their point of intersection is the solution to the system! If the lines are parallel, there's no solution; if they coincide, there are infinite solutions. In this case, we're looking for that special point where both lines meet!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad