Pregunta

Consider a region bounded by the x-axis and the line \( y = 2x \) from \( x = 0 \) to \( x = 1 \). If this shape is revolved around the x-axis, what is the volume of the resulting solid using triangular cross-sections perpendicular to the x-axis?

Ask by Dunn Wagner. in South Africa
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The volume of the solid is \( \frac{8}{3} \) cubic units.

Solución

To determine the volume of the solid formed by revolving the region bounded by the \( x \)-axis and the line \( y = 2x \) from \( x = 0 \) to \( x = 1 \) around the \( x \)-axis with triangular cross-sections perpendicular to the \( x \)-axis, we'll follow these steps: ### 1. Understanding the Region and Its Rotation - **Region:** The region is a right triangle with vertices at \( (0,0) \), \( (1,0) \), and \( (1,2) \). - **Rotation:** When this region is revolved around the \( x \)-axis, each cross-section perpendicular to the \( x \)-axis is a triangle. ### 2. Defining the Triangular Cross-Sections - **Base of Triangle:** For a given \( x \), the height of the original triangle is \( y = 2x \). When rotated around the \( x \)-axis, this creates a circular base with diameter \( 2y = 4x \). - **Height of Triangle:** Assume the height of the triangular cross-section is also \( 4x \) (making it an isosceles right triangle for simplicity). ### 3. Calculating the Area of a Triangular Cross-Section The area \( A(x) \) of each triangular cross-section at position \( x \) can be calculated as: \[ A(x) = \frac{\text{base} \times \text{height}}{2} = \frac{4x \times 4x}{2} = 8x^2 \] ### 4. Integrating to Find the Volume To find the total volume \( V \), integrate the area of the cross-sections from \( x = 0 \) to \( x = 1 \): \[ V = \int_{0}^{1} 8x^2 \, dx = 8 \int_{0}^{1} x^2 \, dx = 8 \left[ \frac{x^3}{3} \right]_0^1 = 8 \left( \frac{1}{3} \right) = \frac{8}{3} \] ### 5. Conclusion The volume of the resulting solid is: \[ V = \frac{8}{3} \text{ cubic units} \] **Answer:** Its volume is 8⁄3 cubic units

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the volume of the solid formed by revolving the region bounded by the x-axis and the line \( y = 2x \) between \( x = 0 \) and \( x = 1 \) around the x-axis, we can use the method of slicing the solid into thin triangular cross-sections. In this case, the height of each triangular cross-section at position \( x \) is given by the line equation \( y = 2x \). Thus, each triangular cross-section has a height \( h = 2x \) and a base located on the x-axis extending from \( 0 \) to \( 2x \). The area \( A \) of a triangle is given by the formula: \[ A = \frac{1}{2} \times \text{base} \times \text{height} \] Here, the base of the triangle at position \( x \) will also be \( 2x \), and the height is \( y = 2x \). Therefore, the area of the triangular cross-section can be expressed as: \[ A(x) = \frac{1}{2} \times (2x) \times (2x) = \frac{1}{2} \times 4x^2 = 2x^2 \] To find the volume \( V \) of the solid, we will integrate the area of the triangular cross-section from \( x = 0 \) to \( x = 1 \): \[ V = \int_{0}^{1} A(x) \, dx = \int_{0}^{1} 2x^2 \, dx \] Now, we compute the integral: \[ V = 2 \int_{0}^{1} x^2 \, dx \] The integral of \( x^2 \) is: \[ \int x^2 \, dx = \frac{x^3}{3} + C \] Evaluating from \( 0 \) to \( 1 \): \[ \int_{0}^{1} x^2 \, dx = \left[ \frac{x^3}{3} \right]_{0}^{1} = \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3} \] Substituting back into our volume expression gives: \[ V = 2 \left( \frac{1}{3} \right) = \frac{2}{3} \] Thus, the volume of the resulting solid when the region is revolved around the x-axis is: \[ \boxed{\frac{2}{3}} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad