Pregunta
upstudy study bank question image url

1. Differentiate the following functions with respect to the given variable of the functions. \( \begin{array}{ll}\text { a) } f(x)=3 x^{3}-2 \sqrt{x} & \text { b) } f(t)=\frac{5}{t^{4}}-4 t+\pi \\ \text { c) } f(x)=(x+4)(2 x-1) & \text { d) } f(y)=\frac{6 y^{3}+y-3}{2 y^{2}}\end{array} \)

Ask by Crawford Jimenez. in Malaysia
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the derivatives of the given functions: a) \( f'(x) = 9x^{2} - \frac{1}{\sqrt{x}} \) b) \( f'(t) = -\frac{20}{t^{5}} - 4 \) c) \( f'(x) = 4x + 7 \) d) \( f'(y) = 3 - \frac{1}{2y^{2}} + \frac{3}{y^{3}} \)

Solución

Certainly! Let's differentiate each of the given functions step by step with respect to their respective variables. --- ### **a) \( f(x) = 3x^{3} - 2 \sqrt{x} \)** **Differentiate with respect to \( x \).** **Solution:** 1. **Differentiate \( 3x^{3} \):** \[ \frac{d}{dx} [3x^{3}] = 3 \times 3x^{2} = 9x^{2} \] 2. **Differentiate \( -2 \sqrt{x} \):** \[ \frac{d}{dx} [-2x^{1/2}] = -2 \times \frac{1}{2} x^{-1/2} = -x^{-1/2} = -\frac{1}{\sqrt{x}} \] **Combine the results:** \[ f'(x) = 9x^{2} - \frac{1}{\sqrt{x}} \] --- ### **b) \( f(t) = \frac{5}{t^{4}} - 4t + \pi \)** **Differentiate with respect to \( t \).** **Solution:** 1. **Rewrite the function for easier differentiation:** \[ f(t) = 5t^{-4} - 4t + \pi \] 2. **Differentiate each term:** - \( \frac{d}{dt} [5t^{-4}] = 5 \times (-4) t^{-5} = -20 t^{-5} \) - \( \frac{d}{dt} [-4t] = -4 \) - \( \frac{d}{dt} [\pi] = 0 \) (since \( \pi \) is a constant) **Combine the results:** \[ f'(t) = -20 t^{-5} - 4 = -\frac{20}{t^{5}} - 4 \] --- ### **c) \( f(x) = (x + 4)(2x - 1) \)** **Differentiate with respect to \( x \).** **Solution:** First, expand the function to simplify differentiation: \[ f(x) = (x + 4)(2x - 1) = 2x^{2} - x + 8x - 4 = 2x^{2} + 7x - 4 \] Now, differentiate term by term: \[ f'(x) = \frac{d}{dx} [2x^{2}] + \frac{d}{dx} [7x] - \frac{d}{dx} [4] = 4x + 7 - 0 = 4x + 7 \] **Alternatively, using the product rule:** \[ f'(x) = (x + 4)'(2x - 1) + (x + 4)(2x - 1)' \] \[ f'(x) = (1)(2x - 1) + (x + 4)(2) = 2x - 1 + 2x + 8 = 4x + 7 \] --- ### **d) \( f(y) = \frac{6y^{3} + y - 3}{2y^{2}} \)** **Differentiate with respect to \( y \).** **Solution:** First, simplify the function by dividing each term in the numerator by \( 2y^{2} \): \[ f(y) = \frac{6y^{3}}{2y^{2}} + \frac{y}{2y^{2}} - \frac{3}{2y^{2}} = 3y + \frac{1}{2} y^{-1} - \frac{3}{2} y^{-2} \] Now, differentiate term by term: \[ f'(y) = \frac{d}{dy} [3y] + \frac{d}{dy} \left[ \frac{1}{2} y^{-1} \right] - \frac{d}{dy} \left[ \frac{3}{2} y^{-2} \right] \] \[ f'(y) = 3 + \frac{1}{2} (-1) y^{-2} - \frac{3}{2} (-2) y^{-3} \] \[ f'(y) = 3 - \frac{1}{2} y^{-2} + 3 y^{-3} \] \[ f'(y) = 3 - \frac{1}{2y^{2}} + \frac{3}{y^{3}} \] **Alternatively, using the quotient rule:** Given \( f(y) = \frac{u(y)}{v(y)} \) where \( u(y) = 6y^{3} + y - 3 \) and \( v(y) = 2y^{2} \), \[ f'(y) = \frac{u'(y)v(y) - u(y)v'(y)}{[v(y)]^{2}} \] Calculate the derivatives: \[ u'(y) = 18y^{2} + 1 \] \[ v'(y) = 4y \] Now plug into the quotient rule: \[ f'(y) = \frac{(18y^{2} + 1)(2y^{2}) - (6y^{3} + y - 3)(4y)}{4y^{4}} \] Simplify the numerator: \[ = \frac{36y^{4} + 2y^{2} - 24y^{4} - 4y^{2} + 12y}{4y^{4}} = \frac{12y^{4} - 2y^{2} + 12y}{4y^{4}} = \frac{6y^{3} - y + 6}{2y^{4}} \] This simplifies to the same result as earlier: \[ f'(y) = 3 - \frac{1}{2y^{2}} + \frac{3}{y^{3}} \] --- **Final Summary of Derivatives:** a) \( f'(x) = 9x^{2} - \dfrac{1}{\sqrt{x}} \) b) \( f'(t) = -\dfrac{20}{t^{5}} - 4 \) c) \( f'(x) = 4x + 7 \) d) \( f'(y) = 3 - \dfrac{1}{2y^{2}} + \dfrac{3}{y^{3}} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

For function \( f(x)=3 x^{3}-2 \sqrt{x} \), the derivative with respect to \( x \) is \( f'(x) = 9x^{2} - \frac{1}{\sqrt{x}} \). This means for every increase in \( x \), the function's rate of change is influenced by both the cubic growth and the diminishing contribution of the square root term. Now looking at \( f(t)=\frac{5}{t^{4}}-4 t+\pi \), the derivative is \( f'(t) = -\frac{20}{t^{5}} - 4 \). Here, the fraction signifies a sharp drop off as \( t \) increases, while the linear term steadily pulls it down. For \( f(x)=(x+4)(2x-1) \), applying the product rule yields \( f'(x) = (x + 4) * 2 + (2x - 1) * 1= 2x + 8 + 2x - 1 = 4x + 7 \). It's like distributing joy with each \( x \) turning into excitement! Lastly, for \( f(y)=\frac{6y^{3}+y-3}{2y^{2}} \), using quotient rule results in \( f'(y) = \frac{(18y^{2}+1)(2y^{2}) - (6y^{3}+y-3)(4y)}{(2y^{2})^{2}} \). So it's a little messy with the derivatives interacting, but that's where the real fun lies in simplification.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad