Pregunta
upstudy study bank question image url

Question Edgar accumulated \( \$ 5,000 \) in credit card debt. If the interest rate is \( 20 \% \) per year and he does not make any payments for 2 years, how much will he owe on this debt in 2 years with monthly compounding? Round your answer to the nearest cent. Do NOT round until you calculate the final answer Provide your answer below:

Ask by Page Zimmerman. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After 2 years with monthly compounding at a 20% annual interest rate, Edgar will owe \$7,434.57 on his \$5,000 credit card debt.

Solución

To calculate the amount Edgar will owe on his credit card debt after 2 years with monthly compounding, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the number of years the money is invested or borrowed. Given: - \( P = 5000 \) - \( r = 0.20 \) (20% as a decimal) - \( n = 12 \) (monthly compounding) - \( t = 2 \) Now, we can substitute these values into the formula: \[ A = 5000 \left(1 + \frac{0.20}{12}\right)^{12 \times 2} \] Let's calculate this step by step. 1. Calculate \( \frac{r}{n} \): \[ \frac{0.20}{12} = 0.01666667 \] 2. Calculate \( nt \): \[ 12 \times 2 = 24 \] 3. Calculate \( A \): \[ A = 5000 \left(1 + 0.01666667\right)^{24} \] Now, let's perform the calculations. Calculate the value by following steps: - step0: Calculate: \(5000\left(1+\frac{0.2}{12}\right)^{12\times 2}\) - step1: Divide the terms: \(5000\left(1+\frac{1}{60}\right)^{12\times 2}\) - step2: Add the numbers: \(5000\left(\frac{61}{60}\right)^{12\times 2}\) - step3: Multiply the numbers: \(5000\left(\frac{61}{60}\right)^{24}\) - step4: Simplify: \(5000\times \frac{61^{24}}{60^{24}}\) - step5: Rewrite the expression: \(20\times 250\times \frac{61^{24}}{60^{24}}\) - step6: Rewrite the expression: \(20\times 250\times \frac{61^{24}}{20^{24}\times 3^{24}}\) - step7: Reduce the numbers: \(250\times \frac{61^{24}}{20^{23}\times 3^{24}}\) - step8: Rewrite the expression: \(10\times 25\times \frac{61^{24}}{20^{23}\times 3^{24}}\) - step9: Rewrite the expression: \(10\times 25\times \frac{61^{24}}{10^{23}\times 2^{23}\times 3^{24}}\) - step10: Reduce the numbers: \(25\times \frac{61^{24}}{10^{22}\times 2^{23}\times 3^{24}}\) - step11: Rewrite the expression: \(25\times \frac{61^{24}}{5^{22}\times 2^{22}\times 2^{23}\times 3^{24}}\) - step12: Rewrite the expression: \(5^{2}\times \frac{61^{24}}{5^{22}\times 2^{22}\times 2^{23}\times 3^{24}}\) - step13: Reduce the numbers: \(1\times \frac{61^{24}}{5^{20}\times 2^{22}\times 2^{23}\times 3^{24}}\) - step14: Multiply the fractions: \(\frac{61^{24}}{5^{20}\times 2^{45}\times 3^{24}}\) After performing the calculations, we find that the amount Edgar will owe after 2 years is approximately: \[ A \approx 7434.57 \] Thus, rounding to the nearest cent, Edgar will owe **\$7,434.57** on his credit card debt after 2 years with monthly compounding.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To calculate how much Edgar will owe after 2 years with monthly compounding, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the number of years the money is invested for. For this scenario: - \( P = 5000 \) - \( r = 0.20 \) - \( n = 12 \) (monthly compounding) - \( t = 2 \) Plugging the values into the formula: \[ A = 5000 \left(1 + \frac{0.20}{12}\right)^{12 \times 2} \] Calculating \( \frac{0.20}{12} \): \[ \frac{0.20}{12} = 0.0166667 \] Now, calculate \( A \): \[ A = 5000 \left(1 + 0.0166667\right)^{24} \] \[ A = 5000 \left(1.0166667\right)^{24} \] Now find \( (1.0166667)^{24} \): \[ A \approx 5000 \times 1.48985 \] \[ A \approx 7449.25 \] After calculating, the total amount Edgar will owe in 2 years, rounded to the nearest cent, is: \[ \boxed{7449.25} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad