7. Write \( \frac{36 m^{4} n^{3}}{8 m} \div \frac{n^{2} m^{2}}{4 m n^{3}} \) in its simplest form and substitute the values to evaluate, given that \( m=3 \) and \( n=\frac{1}{3} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To simplify \( \frac{36 m^{4} n^{3}}{8 m} \div \frac{n^{2} m^{2}}{4 m n^{3}} \), we first rewrite the division as multiplication by the reciprocal: \[ \frac{36 m^{4} n^{3}}{8 m} \times \frac{4 m n^{3}}{n^{2} m^{2}} \] Now we simplify each part: 1. The first fraction simplifies to: \[ \frac{36 m^{4} n^{3}}{8 m} = \frac{36}{8} \cdot \frac{m^{4}}{m} \cdot n^{3} = 4.5 m^{3} n^{3} \] 2. The second fraction simplifies to: \[ \frac{4 m n^{3}}{n^{2} m^{2}} = \frac{4}{1} \cdot \frac{m}{m^{2}} \cdot n^{3} = 4 \cdot \frac{1}{m} \cdot n = \frac{4n}{m} \] Now our expression becomes: \[ 4.5 m^{3} n^{3} \cdot \frac{4n}{m} = 18 m^{2} n^{4} \] Next, substituting \( m = 3 \) and \( n = \frac{1}{3} \): \[ 18 (3^{2}) \left(\frac{1}{3}\right)^{4} = 18 \cdot 9 \cdot \frac{1}{81} = 18 \cdot \frac{9}{81} = 18 \cdot \frac{1}{9} = 2 \] Thus, the final result is \( 2 \).