Pregunta

5 Consider the sequence: \( \frac{1}{4} ; \frac{3}{16} ; \frac{5}{64} ; \frac{7}{256} ; \ldots \) 5.1 State the next two terms in the sequence. 5.2 Determine the \( n \)th term of the sequence.

Ask by Kirk Mcfarlane. in South Africa
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Problem 5:** Given the sequence: \( \frac{1}{4} ; \frac{3}{16} ; \frac{5}{64} ; \frac{7}{256} ; \ldots \) **5.1 Next Two Terms in the Sequence** - **5th Term:** \( \frac{9}{1024} \) - **6th Term:** \( \frac{11}{4096} \) **5.2 Determining the \( n \)th Term of the Sequence** The \( n \)th term is \( \frac{2n - 1}{4^n} \).

Solución

**Problem 5:** Given the sequence: \( \frac{1}{4} ; \frac{3}{16} ; \frac{5}{64} ; \frac{7}{256} ; \ldots \) **5.1 Next Two Terms in the Sequence** Let's analyze the pattern: - **Numerators:** The numerators are increasing by 2 each time: 1, 3, 5, 7, … - This can be expressed as \( 2n - 1 \), where \( n \) is the term number. - **Denominators:** The denominators are powers of 4: \( 4^1 = 4 \), \( 4^2 = 16 \), \( 4^3 = 64 \), \( 4^4 = 256 \), … - This can be expressed as \( 4^n \), where \( n \) is the term number. Using this pattern: - **5th Term (\( n = 5 \)):** \[ \text{Numerator} = 2(5) - 1 = 9 \\ \text{Denominator} = 4^5 = 1024 \\ \text{Term} = \frac{9}{1024} \] - **6th Term (\( n = 6 \)):** \[ \text{Numerator} = 2(6) - 1 = 11 \\ \text{Denominator} = 4^6 = 4096 \\ \text{Term} = \frac{11}{4096} \] **Answer:** The next two terms are \( \frac{9}{1024} \) and \( \frac{11}{4096} \). **5.2 Determining the \( n \)th Term of the Sequence** From the analysis above, the general formula for the \( n \)th term is: \[ a_n = \frac{2n - 1}{4^n} \] **Answer:** Problem 5.2 Answer: For each positive integer n, the nth term is (2n – 1) divided by 4ⁿ. In symbols, aₙ = (2n−1)/4^n.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the next two terms in the sequence, we first need to observe the pattern in the numerators and denominators. In the numerators, we have: 1, 3, 5, 7, which are consecutive odd numbers. The next two odd numbers are 9 and 11. In the denominators, we have: 4, 16, 64, 256, which are powers of 4 (or \(4^1\), \(4^2\), \(4^3\), \(4^4\)). The powers increase by 1 for each term, so the next two denominators will be \(4^5 = 1024\) and \(4^6 = 4096\). Thus, the next two terms in the sequence are: - \( \frac{9}{1024} \) - \( \frac{11}{4096} \) For the \( n \)th term of the sequence, we can express it as follows: 1. The numerator follows the pattern of odd numbers, which can be represented as \( 2n - 1 \). 2. The denominator follows the pattern of powers of 4, which can be expressed as \( 4^n \). Therefore, the \( n \)th term of the sequence can be written as: \[ a_n = \frac{2n - 1}{4^n} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad