Pregunta
upstudy study bank question image url

Find the unit vector in the direction of \( \mathbf{v} \). \[ \mathbf{v}=-7.1 \mathbf{i}+3.5 \mathbf{j} \] \( \mathbf{u}= \)

Ask by Davison Hobbs. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The unit vector in the direction of \( \mathbf{v} = -7.1\,\mathbf{i} + 3.5\,\mathbf{j} \) is approximately \( \mathbf{u} \approx -0.896\,\mathbf{i} + 0.443\,\mathbf{j} \).

Solución

To find the **unit vector** \( \mathbf{u} \) in the direction of the vector \( \mathbf{v} = -7.1\,\mathbf{i} + 3.5\,\mathbf{j} \), follow these steps: ### 1. **Calculate the Magnitude of \( \mathbf{v} \)** The magnitude (or length) of \( \mathbf{v} \) is given by: \[ \|\mathbf{v}\| = \sqrt{(-7.1)^2 + (3.5)^2} \] \[ \|\mathbf{v}\| = \sqrt{50.41 + 12.25} = \sqrt{62.66} \approx 7.915 \] ### 2. **Divide Each Component of \( \mathbf{v} \) by Its Magnitude** The unit vector \( \mathbf{u} \) in the direction of \( \mathbf{v} \) is obtained by dividing each component of \( \mathbf{v} \) by \( \|\mathbf{v}\| \): \[ \mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{-7.1\,\mathbf{i} + 3.5\,\mathbf{j}}{7.915} \] \[ \mathbf{u} = \left( \frac{-7.1}{7.915} \right)\mathbf{i} + \left( \frac{3.5}{7.915} \right)\mathbf{j} \] \[ \mathbf{u} \approx -0.896\,\mathbf{i} + 0.443\,\mathbf{j} \] ### 3. **Final Answer** \[ \boxed{\,\mathbf{u} \approx -0.896\,\mathbf{i} + 0.443\,\mathbf{j}\,} \] This unit vector \( \mathbf{u} \) has a magnitude of 1 and points in the same direction as the original vector \( \mathbf{v} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the unit vector \( \mathbf{u} \) in the direction of \( \mathbf{v} \), we first calculate the magnitude of \( \mathbf{v} \): \[ |\mathbf{v}| = \sqrt{(-7.1)^2 + (3.5)^2} = \sqrt{50.41 + 12.25} = \sqrt{62.66} \approx 7.93. \] Now, we divide \( \mathbf{v} \) by its magnitude: \[ \mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{-7.1 \mathbf{i} + 3.5 \mathbf{j}}{7.93} \approx -0.894 \mathbf{i} + 0.441 \mathbf{j}. \] So, the unit vector \( \mathbf{u} \) is approximately \[ \mathbf{u} \approx -0.894 \mathbf{i} + 0.441 \mathbf{j}. \] --- Did you know that unit vectors are often used in physics to represent directional quantities without concern for magnitude? They simplify many calculations, especially when dealing with forces or velocity in multiple dimensions. Instead of calculating the whole vector each time, you just scale it by the unit vector! In real-life applications, navigating using GPS coordinates can be thought of in terms of unit vectors. Each coordinate represents a direction in a two-dimensional space. By breaking down complex movements into simple unit vectors, pilots, drivers, and delivery drones can efficiently manage their paths, helping to avoid obstacles while staying on course.

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad