Pregunta
upstudy study bank question image url

b) Evaluate: \( \lim _{x \rightarrow \theta} \frac{x \tan \theta-\theta \tan x}{-\theta} \)

Ask by King Mccoy. in Nepal
Jan 09,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The limit is 0.

Solución

To evaluate the limit: \[ \lim_{x \rightarrow \theta} \frac{x \tan \theta - \theta \tan x}{-\theta} \] Let's analyze the expression step by step. 1. **Simplify the Expression:** The numerator is: \[ x \tan \theta - \theta \tan x \] Dividing by \(-\theta\): \[ \frac{x \tan \theta - \theta \tan x}{-\theta} = -\frac{x \tan \theta}{\theta} + \tan x = -\left(\frac{x}{\theta}\right) \tan \theta + \tan x \] 2. **Evaluate the Limit as \(x\) Approaches \(\theta\):** As \(x \rightarrow \theta\), let's substitute \(x = \theta\) directly into the simplified expression: \[ -\left(\frac{\theta}{\theta}\right) \tan \theta + \tan \theta = -\tan \theta + \tan \theta = 0 \] Alternatively, you can approach this using a Taylor series expansion around \(x = \theta\): Let \(h = x - \theta\), so as \(x \rightarrow \theta\), \(h \rightarrow 0\). Expand \(\tan(x)\) around \(x = \theta\): \[ \tan(x) \approx \tan(\theta) + h \sec^2(\theta) \] Substituting back into the original expression: \[ x \tan \theta - \theta \tan x \approx (\theta + h)\tan \theta - \theta \left(\tan \theta + h \sec^2(\theta)\right) = h \tan \theta - \theta h \sec^2(\theta) = h (\tan \theta - \theta \sec^2 \theta) \] Dividing by \(-\theta\): \[ \frac{h (\tan \theta - \theta \sec^2 \theta)}{-\theta} = h \cdot \left(\frac{-\tan \theta + \theta \sec^2 \theta}{\theta}\right) \] As \(h \rightarrow 0\), the entire expression approaches \(0\). **Conclusion:** The limit is: \[ 0 \] **Final Answer:** 0

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To evaluate the limit \[ \lim _{x \rightarrow \theta} \frac{x \tan \theta - \theta \tan x}{-\theta}, \] let's first rewrite the limit in a more manageable form. We can factor out \(-\frac{1}{\theta}\): \[ \lim _{x \rightarrow \theta} \frac{x \tan \theta - \theta \tan x}{-\theta} = -\frac{1}{\theta} \lim _{x \rightarrow \theta} (x \tan \theta - \theta \tan x). \] As \(x\) approaches \(\theta\), both \(x \tan \theta\) and \(\theta \tan x\) approach \(\theta \tan \theta\). Thus, we can observe that the limit has an indeterminate form (i.e., \(0\) over \(0\)), so we can apply L'Hôpital's Rule. Now we need to differentiate the numerator and denominator: 1. The derivative of the numerator \(x \tan \theta - \theta \tan x\) with respect to \(x\) is: \[ \tan \theta - \theta \sec^2 x. \] 2. The derivative of \(-\theta\) with respect to \(x\) is \(0\). Applying L'Hôpital's Rule, we have: \[ \lim_{x \to \theta} \frac{x \tan \theta - \theta \tan x}{-\theta} = -\frac{1}{\theta} \lim_{x \to \theta} \left( \tan \theta - \theta \sec^2 x \right). \] Now we calculate this limit: \[ \lim_{x \to \theta} \left( \tan \theta - \theta \sec^2 x \right) = \tan \theta - \theta \sec^2 \theta. \] Putting this into our earlier limit gives: \[ -\frac{1}{\theta} \left( \tan \theta - \theta \sec^2 \theta \right). \] Thus, our limit becomes: \[ \lim _{x \rightarrow \theta} \frac{x \tan \theta - \theta \tan x}{-\theta} = -\frac{1}{\theta} (\tan \theta - \theta \sec^2 \theta). \] And this is our final simplification. Hence, the limit evaluates to: \[ \lim _{x \rightarrow \theta} \frac{x \tan \theta - \theta \tan x}{-\theta} = -\frac{\tan \theta - \theta \sec^2 \theta}{\theta}. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad