C. Find the measure of the sides and angies the theorem used. 1. In isosceles trapezoid MARE where 2. If \( M E=18 \), what is \( A R \) ? 3. If \( S \) and \( T \) are the midpoints of \( M E \) an 4. If \( M A=25 \) and \( E R=39 \), what is \( S T \) ? 5. If \( S T=23 \) and \( M A=17 \), what is \( E R \) ? 6. If \( S T=40 \) and \( E R=50 \), what is \( M A \) ? 7. If \( M R=27 \), what is \( A E \) ? 8. In trapezoid \( R E A P \) if \( \angle R \) and \( \angle E \) are 8. \( \angle P \) ?
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
In isosceles trapezoids like MARE, the non-parallel sides are equal in length, and the base angles are also equal. This symmetry means that if you know the lengths of one side, you can deduce the lengths of the others using the properties of these angles. For example, if \( ME = 18 \), then \( AR \) will also be 18 since the two bases are equal. When it comes to midpoints, for any trapezoid, the length of the segment connecting the midpoints of the two non-parallel sides (denoted \( ST \)) can be found using the formula: \( ST = \frac{ME + AR}{2} \). If \( MA = 25 \) and \( ER = 39 \), then \( ST \) would be the average of those two lengths, producing an easy way to calculate geometric properties without needing troublesome angles.