Josue has \( \$ 0.33 \) worth of pennies and nickels, He has a total of 13 pennics and nickels altogether. Write a system of equations that could be used to determine the number of pennics and the number of nickels that Josue has. Define the variables that you use to write the system.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
Let's define our variables first! Let \( p \) represent the number of pennies and \( n \) represent the number of nickels. Now, we can set up our system of equations. The first equation reflects the total number of coins Josue has: \[ p + n = 13 \] The second equation represents the total value of the coins. Remember that pennies are worth \( \$0.01 \) and nickels are worth \( \$0.05 \): \[ 0.01p + 0.05n = 0.33 \] So the system of equations to solve for \( p \) and \( n \) is: 1) \( p + n = 13 \) 2) \( 0.01p + 0.05n = 0.33 \) Happy solving!