Pregunta
Question 2
A car moves at a velocity
with a solid wall. The car
and comes to a standstill
is 900 kg .
2.1 Calculate the impulse
2.2 Calculate the magnitu
A car moves at a velocity
with a solid wall. The car
and comes to a standstill
is 900 kg .
2.1 Calculate the impulse
2.2 Calculate the magnitu
Ask by Martin Davies. in South Africa
Jan 25,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
To calculate the impulse and its magnitude:
-
Impulse is calculated as:where
is the initial velocity of the car. -
Magnitude of Impulse is:
So, the impulse is
and its magnitude is
.
Solución
To calculate the impulse and the magnitude of the impulse, we need to know the force applied to the car and the time over which the force is applied.
Given:
- Mass of the car: 900 kg
- Velocity of the car: Not provided
- Time: Not provided
Let’s assume the velocity of the car is
m/s and the time it takes for the car to come to a standstill is
seconds.
2.1 Calculate the impulse:
The impulse of a force is given by the formula:
The impulse of a force is given by the formula:
Since the car comes to a standstill, the final velocity is 0 m/s. We can use the equation of motion to find the force applied:
where:
-
is the force applied -
is the mass of the car -
is the final velocity (0 m/s) -
is the initial velocity (not provided) -
is the time
2.2 Calculate the magnitude of the impulse:
The magnitude of the impulse is the same as the impulse itself, as it is a scalar quantity.
The magnitude of the impulse is the same as the impulse itself, as it is a scalar quantity.
Let’s calculate the force applied first and then the impulse.
Simplify the expression by following steps:
Simplify the expression by following steps:
- step0: Solution:
- step1: Remove 0:
- step2: Multiply the numbers:
- step3: Calculate:
The force applied to the car is given by the equation:
Now, let’s calculate the impulse using the formula:
Substitute the expression for the force into the formula for the impulse:
Simplify the expression:
Therefore, the impulse is equal to the negative of the initial velocity of the car.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Mind Expander
When the car collides with the wall and comes to a standstill, the change in momentum represents the impulse experienced by the car. If the car’s initial velocity was
, the impulse
can be calculated using the formula
or
. Assuming the car was moving with some velocity
before the collision, the impulse would equal
.
The magnitude of the impulse is directly related to the change in velocity, which here is from
to
. Therefore, the magnitude of the impulse will simply be
, illustrating how impulse is a significant factor in collision scenarios!
For a more interactive experience with physics, consider simulating collisions using online physics engines. They allow you to visualize how changes in mass and velocity affect momentum and impulse in a playful and educational way. Plus, it’s a fantastic way to engage creatively with physics concepts!
You can also delve into classic texts like “Physics for the IB Diploma” by K.A. Tsokos to deepen your understanding of impulse, momentum, and collisions. This book breaks down complex concepts into more digestible portions and includes real-life examples that make learning about physics relatable and fun!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium