Pregunta
upstudy study bank question image url

\( \int _ { 0 } ^ { t } \sin u e ^ { t - u } d u \)

Ask by Boone Fleming. in Iran
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The integral evaluates to \( \frac{e^{t}}{2} - \frac{1}{2}\sin(t) - \frac{1}{2}\cos(t) \).

Solución

Calculate the integral \( \int_{0}^{t} \sin(u) e^{t-u} du \). Evaluate the integral by following steps: - step0: Evaluate using partial integration formula: \(\int_{0}^{t} \sin\left(u\right)\times e^{t-u} du\) - step1: Evaluate the integral: \(\int \sin\left(u\right)\times e^{t-u} du\) - step2: Prepare for integration by parts: \(\begin{align}&u=\sin\left(u\right)\\&dv=e^{t-u}du\end{align}\) - step3: Calculate the derivative: \(\begin{align}&du=\cos\left(u\right)du\\&dv=e^{t-u}du\end{align}\) - step4: Evaluate the integral: \(\begin{align}&du=\cos\left(u\right)du\\&v=-e^{t-u}\end{align}\) - step5: Substitute the values into formula: \(\sin\left(u\right)\left(-e^{t-u}\right)-\int \cos\left(u\right)\left(-e^{t-u}\right) du\) - step6: Calculate: \(-\sin\left(u\right)\times e^{t-u}-\int -\cos\left(u\right)\times e^{t-u} du\) - step7: Evaluate the integral: \(-\sin\left(u\right)\times e^{t-u}-\cos\left(u\right)\times e^{t-u}-\int \sin\left(u\right)\times e^{t-u} du\) - step8: Write the expression as an equation: \(\int \sin\left(u\right)\times e^{t-u} du=-\sin\left(u\right)\times e^{t-u}-\cos\left(u\right)\times e^{t-u}-\int \sin\left(u\right)\times e^{t-u} du\) - step9: Move the expression to the left side: \(2\times \int \sin\left(u\right)\times e^{t-u} du=-\sin\left(u\right)\times e^{t-u}-\cos\left(u\right)\times e^{t-u}\) - step10: Divide both sides: \(\int \sin\left(u\right)\times e^{t-u} du=-\frac{e^{t-u}\sin\left(u\right)}{2}-\frac{e^{t-u}\cos\left(u\right)}{2}\) - step11: Rewrite the expression: \(-\frac{e^{t-u}\sin\left(u\right)}{2}-\frac{e^{t-u}\cos\left(u\right)}{2}\) - step12: Return the limits: \(\left(-\frac{e^{t-u}\sin\left(u\right)}{2}-\frac{e^{t-u}\cos\left(u\right)}{2}\right)\bigg |_{0}^{t}\) - step13: Calculate the value: \(\frac{e^{t}}{2}-\frac{1}{2}\sin\left(t\right)-\frac{1}{2}\cos\left(t\right)\) The integral of \( \sin(u) e^{t-u} \) from 0 to t is \( \frac{e^{t}}{2} - \frac{1}{2}\sin(t) - \frac{1}{2}\cos(t) \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To evaluate the integral \( \int _ { 0 } ^ { t } \sin u e ^ { t - u } d u \), you can use integration by parts. Set \( v = e^{t-u} \) (hence \( dv = -e^{t-u} du \)) and \( dw = \sin u du \). You will differentiate \( w \) to obtain \( w = -\cos u \). After applying integration by parts, the integral simplifies nicely, and you can find that: \[ \int _{0}^{t} \sin u e^{t-u} du = e^t \left( -\cos(u) \bigg|_{0}^{t} + \int_0^t e^{-u} \cos(u) du \right). \] This method gives you a clear path to evaluating the total integral stepwise! To check your work, you can often utilize properties of the Laplace Transform, especially since the function involves an exponential factor. Think of \( \sin(u) \) and \( e^{-u} \) as inputs in a frequency or decay context, allowing for a neat tie into differential equations typically encountered in physics or engineering problems.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad