Responder
The integral evaluates to \( \frac{e^{t}}{2} - \frac{1}{2}\sin(t) - \frac{1}{2}\cos(t) \).
Solución
Calculate the integral \( \int_{0}^{t} \sin(u) e^{t-u} du \).
Evaluate the integral by following steps:
- step0: Evaluate using partial integration formula:
\(\int_{0}^{t} \sin\left(u\right)\times e^{t-u} du\)
- step1: Evaluate the integral:
\(\int \sin\left(u\right)\times e^{t-u} du\)
- step2: Prepare for integration by parts:
\(\begin{align}&u=\sin\left(u\right)\\&dv=e^{t-u}du\end{align}\)
- step3: Calculate the derivative:
\(\begin{align}&du=\cos\left(u\right)du\\&dv=e^{t-u}du\end{align}\)
- step4: Evaluate the integral:
\(\begin{align}&du=\cos\left(u\right)du\\&v=-e^{t-u}\end{align}\)
- step5: Substitute the values into formula:
\(\sin\left(u\right)\left(-e^{t-u}\right)-\int \cos\left(u\right)\left(-e^{t-u}\right) du\)
- step6: Calculate:
\(-\sin\left(u\right)\times e^{t-u}-\int -\cos\left(u\right)\times e^{t-u} du\)
- step7: Evaluate the integral:
\(-\sin\left(u\right)\times e^{t-u}-\cos\left(u\right)\times e^{t-u}-\int \sin\left(u\right)\times e^{t-u} du\)
- step8: Write the expression as an equation:
\(\int \sin\left(u\right)\times e^{t-u} du=-\sin\left(u\right)\times e^{t-u}-\cos\left(u\right)\times e^{t-u}-\int \sin\left(u\right)\times e^{t-u} du\)
- step9: Move the expression to the left side:
\(2\times \int \sin\left(u\right)\times e^{t-u} du=-\sin\left(u\right)\times e^{t-u}-\cos\left(u\right)\times e^{t-u}\)
- step10: Divide both sides:
\(\int \sin\left(u\right)\times e^{t-u} du=-\frac{e^{t-u}\sin\left(u\right)}{2}-\frac{e^{t-u}\cos\left(u\right)}{2}\)
- step11: Rewrite the expression:
\(-\frac{e^{t-u}\sin\left(u\right)}{2}-\frac{e^{t-u}\cos\left(u\right)}{2}\)
- step12: Return the limits:
\(\left(-\frac{e^{t-u}\sin\left(u\right)}{2}-\frac{e^{t-u}\cos\left(u\right)}{2}\right)\bigg |_{0}^{t}\)
- step13: Calculate the value:
\(\frac{e^{t}}{2}-\frac{1}{2}\sin\left(t\right)-\frac{1}{2}\cos\left(t\right)\)
The integral of \( \sin(u) e^{t-u} \) from 0 to t is \( \frac{e^{t}}{2} - \frac{1}{2}\sin(t) - \frac{1}{2}\cos(t) \).
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución