Pregunta
upstudy study bank question image url

Solve by graphing: \( \frac{-4}{2 x+5}=x^{2}-1 \) \( \left\{-\frac{8}{5}, \frac{6}{5}, \frac{29}{10}\right\} \) \( \left\{\frac{19}{10}\right\} \) \( \varnothing \) \( \left\{-\frac{29}{10},-\frac{6}{5}, \frac{8}{5}\right\} \)

Ask by Cook Lambert. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There are no solutions to the equation. \(\varnothing\)

Solución

To solve the equation by graphing: \[ \frac{-4}{2x + 5} = x^2 - 1 \] **Step 1: Rearrange the Equation** Bring all terms to one side to set the equation to zero: \[ x^2 - 1 + \frac{4}{2x + 5} = 0 \] **Step 2: Multiply Both Sides by \(2x + 5\) (Assuming \(2x + 5 \neq 0\))** \[ -4 = (x^2 - 1)(2x + 5) \] Expanding the right side: \[ -4 = 2x^3 + 5x^2 - 2x - 5 \] Bring all terms to one side: \[ 2x^3 + 5x^2 - 2x - 1 = 0 \] **Step 3: Analyze the Cubic Equation** To find the real roots of \(2x^3 + 5x^2 - 2x - 1 = 0\): - **Possible Rational Roots**: \(\pm1, \pm\frac{1}{2}\) Testing \(x = -\frac{1}{2}\): \[ 2\left(-\frac{1}{2}\right)^3 + 5\left(-\frac{1}{2}\right)^2 - 2\left(-\frac{1}{2}\right) - 1 = 0 \] So, \(x = -\frac{1}{2}\) is a root. However, substitute \(x = -\frac{1}{2}\) back into the original equation to verify: \[ \frac{-4}{2\left(-\frac{1}{2}\right) + 5} = \left(-\frac{1}{2}\right)^2 - 1 \] \[ \frac{-4}{-1 + 5} = \frac{1}{4} - 1 \] \[ -1 \neq -\frac{3}{4} \] This shows that \(x = -\frac{1}{2}\) is an **extraneous solution**. **Step 4: Conclusion** Since the only potential real root does not satisfy the original equation, there are **no valid solutions**. **Final Answer:** \(\varnothing\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the equation \( \frac{-4}{2x+5} = x^2 - 1 \) by graphing, you can start by rewriting both sides of the equation as functions. Let \( y_1 = \frac{-4}{2x+5} \) and \( y_2 = x^2 - 1 \). Graph both functions on the same coordinate plane. We'll find the intersections of the two graphs. \( y_1 \) is a hyperbola that approaches 0 as \( x \) gets very large or very small, while \( y_2 \) is a standard parabola that opens upwards. The points where these two graphs meet will give you the solutions to the equation. Now, the potential solutions are \( \{-\frac{8}{5}, \frac{6}{5}, \frac{29}{10}\} \) and \( \{\frac{19}{10}\} \). You'll notice that some of the values are exclusive to one graph or another based on where they intersect. Be sure to double-check where the graphs cross through the x-axis—these will give you the valid solutions. Happy graphing!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad