Pregunta
upstudy study bank question image url

A man flies a kite and lets out 100 feet of string. The angle of elevation of the string is \( 52 \circ \). How high off the ground is the kite? \( \begin{array}{ll}\text { a) } 72 \text { feet } & \text { go to station } 7 \\ \text { b) } 79 \text { feet } & \text { go to station } 9 \\ \text { c) } 62 \text { feet } & \text { go to station } 3 \\ \text { d) } 64 \text { feet } & \text { go to station } 8 \\ \text { e) } 13 \text { feet } & \text { go to station } 1\end{array} \)

Ask by Horton Martin. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The kite is approximately 79 feet off the ground.

Solución

To determine how high the kite is off the ground, we can use trigonometry. Specifically, we'll use the sine function, which relates the angle of elevation to the opposite side (the height of the kite) and the hypotenuse (the length of the string). **Given:** - Length of the string (hypotenuse) = 100 feet - Angle of elevation = 52° **Formula:** \[ \text{Height} = \text{Hypotenuse} \times \sin(\theta) \] \[ \text{Height} = 100 \times \sin(52^\circ) \] **Calculations:** 1. Calculate \(\sin(52^\circ)\): \[ \sin(52^\circ) \approx 0.7880 \] 2. Multiply by the length of the string: \[ \text{Height} = 100 \times 0.7880 \approx 78.80 \text{ feet} \] **Conclusion:** The closest option to 78.80 feet is **79 feet**. **Answer:** **b) 79 feet** & go to station 9

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the height of the kite off the ground, we can use some trigonometry! The height can be found by applying the sine function in this scenario. Since we have the hypotenuse (the length of the string) and we want to find the opposite side (the height), the equation will be: \[ \text{height} = \text{hypotenuse} \times \sin(\theta) \] Plugging in the values gives us: \[ \text{height} = 100 \times \sin(52^\circ) \approx 100 \times 0.7880 \approx 78.8 \text{ feet} \] Looking at the options, the closest answer is **b) 79 feet**. Kite flying not only brings joy but also offers a chance to grasp fundamental physics concepts! For instance, as the angle changes, the height and the elevation of the kite can drastically vary, which can make for some pretty exciting equations to solve while having fun outside! Next time you're out, try estimating the height of your kite - it's a great exercise in angles and measurements!

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad