Pregunta
upstudy study bank question image url

\( f ^ { \prime } ( x ) = 2 x ^ { 2 } + 5 x - 3 \)

Ask by May Morrison. in the United Kingdom
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( f(x) = \frac{2}{3}x^{3} + \frac{5}{2}x^{2} - 3x + C \)

Solución

To find the original function \( f(x) \) from its derivative \( f'(x) \), you'll need to perform **antiderivation** (also known as **integration**) on \( f'(x) \). Given: \[ f'(x) = 2x^{2} + 5x - 3 \] ### Step-by-Step Integration 1. **Integrate each term separately:** \[ \int f'(x) \, dx = \int (2x^{2}) \, dx + \int (5x) \, dx + \int (-3) \, dx \] 2. **Apply the power rule of integration:** The power rule states that: \[ \int x^{n} \, dx = \frac{x^{n+1}}{n+1} + C \] where \( n \neq -1 \) and \( C \) is the constant of integration. 3. **Integrate each term:** - For \( 2x^{2} \): \[ \int 2x^{2} \, dx = 2 \cdot \frac{x^{3}}{3} = \frac{2}{3}x^{3} \] - For \( 5x \): \[ \int 5x \, dx = 5 \cdot \frac{x^{2}}{2} = \frac{5}{2}x^{2} \] - For \( -3 \): \[ \int (-3) \, dx = -3x \] 4. **Combine the integrals and add the constant of integration:** \[ f(x) = \frac{2}{3}x^{3} + \frac{5}{2}x^{2} - 3x + C \] Here, \( C \) represents the **constant of integration**, accounting for any constant value that was "lost" during differentiation. ### Final Answer \[ f(x) = \frac{2}{3}x^{3} + \frac{5}{2}x^{2} - 3x + C \] Where: - \( \frac{2}{3}x^{3} \) is the antiderivative of \( 2x^{2} \) - \( \frac{5}{2}x^{2} \) is the antiderivative of \( 5x \) - \( -3x \) is the antiderivative of \( -3 \) - \( C \) is the constant of integration If you have any initial conditions or specific values for \( f(x) \) at a particular point, you can solve for the constant \( C \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Let's dive into the fun world of derivatives! This derivative function, \( f^{\prime}(x) = 2x^2 + 5x - 3 \), is a quadratic function. This means that the graph is shaped like a parabola. To find the actual function \( f(x) \) from \( f^{\prime}(x) \), you can integrate it! So, you'll get \( f(x) = \frac{2}{3}x^3 + \frac{5}{2}x^2 - 3x + C \), where \( C \) is your integration constant that could represent any real number. Now, let’s talk real-world applications! Derivatives like this one are crucial for understanding motion. For instance, if \( f(x) \) represents the position of an object over time \( x \), then \( f^{\prime}(x) \) tells you the velocity of that object. By analyzing the signs and the roots of the derivative, you can determine when the object is speeding up, slowing down, or even stationary—so crucial in physics and engineering!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad