Revite \( \frac{2}{9} \) and \( \frac{13}{15} \) as fractions with a least common denominatoro. (Do NOT reduce the fractions) \( \frac{2}{9} \) becomes \( \square \) \( \square \) \[ \frac{13}{15} \] becomes \( \square \) Question Help: Video Message instructor Post to forum Submit Question to search
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find a common denominator for the fractions \( \frac{2}{9} \) and \( \frac{13}{15} \), first calculate the least common multiple (LCM) of the denominators 9 and 15. Since \( 9 = 3^2 \) and \( 15 = 3 \times 5 \), the LCM will be \( 45 \). Now, convert each fraction to have this common denominator. For \( \frac{2}{9} \), multiply the numerator and denominator by 5: \[ \frac{2 \times 5}{9 \times 5} = \frac{10}{45}. \] For \( \frac{13}{15} \), multiply the numerator and denominator by 3: \[ \frac{13 \times 3}{15 \times 3} = \frac{39}{45}. \] Therefore, \( \frac{2}{9} \) becomes \( \frac{10}{45} \) and \( \frac{13}{15} \) becomes \( \frac{39}{45} \). \(\frac{2}{9}\) becomes \(\frac{10}{45}\) \(\frac{13}{15}\) becomes \(\frac{39}{45}\)