Pregunta
upstudy study bank question image url

\( y ^ { \prime \prime } + y = x \)

Ask by Lee Ford. in Saudi Arabia
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The general solution to the differential equation \( y'' + y = x \) is: \[ y(x) = C_1 \cos(x) + C_2 \sin(x) + x \] where \( C_1 \) and \( C_2 \) are constants.

Solución

To solve the differential equation: \[ y'' + y = x \] we aim to find the general solution, which consists of two parts: 1. **Complementary (Homogeneous) Solution (\( y_c \))**: Solution to the homogeneous equation \( y'' + y = 0 \). 2. **Particular Solution (\( y_p \))**: A specific solution to the non-homogeneous equation \( y'' + y = x \). ### 1. Complementary Solution (\( y_c \)) Solve the homogeneous equation: \[ y'' + y = 0 \] **Characteristic Equation:** \[ r^2 + 1 = 0 \quad \Rightarrow \quad r = \pm i \] **General Solution of Homogeneous Equation:** \[ y_c = C_1 \cos(x) + C_2 \sin(x) \] where \( C_1 \) and \( C_2 \) are arbitrary constants. ### 2. Particular Solution (\( y_p \)) Find a particular solution to: \[ y'' + y = x \] Since the right-hand side (RHS) is a polynomial of degree 1, we assume a particular solution of the form: \[ y_p = Ax + B \] where \( A \) and \( B \) are constants to be determined. **Compute Derivatives:** \[ y_p' = A \] \[ y_p'' = 0 \] **Substitute \( y_p \) into the Differential Equation:** \[ y_p'' + y_p = 0 + (Ax + B) = Ax + B = x \] **Equate Coefficients:** \[ Ax + B = x \quad \Rightarrow \quad A = 1 \quad \text{and} \quad B = 0 \] **Therefore, the Particular Solution is:** \[ y_p = x \] ### 3. General Solution Combine the complementary and particular solutions: \[ y = y_c + y_p = C_1 \cos(x) + C_2 \sin(x) + x \] where \( C_1 \) and \( C_2 \) are constants determined by initial conditions. ### Final Answer The general solution to the differential equation \( y'' + y = x \) is: \[ y(x) = C_1 \cos(x) + C_2 \sin(x) + x \] where \( C_1 \) and \( C_2 \) are arbitrary constants.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the second-order linear differential equation \( y'' + y = x \), we first need to find the complementary solution by solving the homogeneous equation \( y'' + y = 0 \). The solutions to this equation are of the form \( y_h = C_1 \cos(x) + C_2 \sin(x) \), where \( C_1 \) and \( C_2 \) are constants determined by initial conditions. Next, we need to find a particular solution \( y_p \). A common approach is to use the method of undetermined coefficients. Since the non-homogeneous term \( x \) is polynomial, we can try \( y_p = Ax + B \). After calculating \( y_p'' + y_p \), we can match coefficients to solve for \( A \) and \( B \). Finally, we combine the complementary and particular solutions as \( y = y_h + y_p \). Now you can explore the harmony of mathematics – it feels almost like composing a symphony! Each part plays a vital role, and when they come together, they create an elegant solution to the dance of numbers. Who knew solving equations could be akin to crafting melodies? If you're curious about similar structures, jump into the world of eigenvalues and differential equations! The exploration of topics like oscillations and harmonic motions can truly illuminate the beauty in mathematics, often revealing connections between seemingly unrelated concepts in surprising ways. Happy solving!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad