Pregunta
upstudy study bank question image url

Which of the following best represents a function? A function is a set of ordered pairs such that each input value has exactly one output value. A function is a relation where the \( y \)-values have to be repeated with different \( x \)-values. All relations are functions. A function is a set of ordered pairs where the \( x \)-values can be paired with multiple \( y \)-values.

Ask by Bolton Rowe. in Japan
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

A function is a set of ordered pairs where each input has exactly one output.

Solución

To determine which statement best represents a function, let's analyze each option based on the definition of a function: 1. **A function is a set of ordered pairs such that each input value has exactly one output value.** - This statement is correct. A function must assign exactly one output value for each input value. 2. **A function is a relation where the \( y \)-values have to be repeated with different \( x \)-values.** - This statement is incorrect. While it is possible for different \( x \)-values to map to the same \( y \)-value, it is not a requirement for a relation to be a function. 3. **All relations are functions.** - This statement is incorrect. Not all relations are functions; a relation can have multiple outputs for a single input, which would disqualify it from being a function. 4. **A function is a set of ordered pairs where the \( x \)-values can be paired with multiple \( y \)-values.** - This statement is incorrect. A function cannot have multiple \( y \)-values for a single \( x \)-value. Based on this analysis, the first statement is the only one that accurately represents a function. **Final Answer:** A function is a set of ordered pairs such that each input value has exactly one output value.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Here's a fun fact: The concept of a function dates back to the work of mathematicians like Gottfried Wilhelm Leibniz and Leonhard Euler in the 17th and 18th centuries! Initially, functions were seen more as a way to describe curves or geometrical shapes rather than the formal definition we use today. Isn't it fascinating how something so foundational in mathematics has such rich historical roots? In real-world applications, functions are everywhere! For instance, think about a vending machine: you put in a specific amount of money (input), and you select a particular snack (output). Each unique amount you input leads to one specific outcome (the snack)! This is just like the definition of a function, showcasing its importance in our everyday problem-solving and decision-making processes.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad