Pregunta
\( y<-3 x+2 \) Type an \( (x, y) \) ordered pair that is a solution to this inequality.
Ask by Mejia Bright. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
One solution is \((0, 1)\).
Solución
One possible ordered pair that satisfies the inequality \( y < -3x + 2 \) is **\((0, 1)\)**.
**Verification:**
- Substitute \( x = 0 \) into the inequality:
\[
y < -3(0) + 2 \Rightarrow y < 2
\]
- Here, \( y = 1 \) is indeed less than 2.
Therefore, the point \((0, 1)\) is a valid solution to the inequality.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
One solution to the inequality \( y < -3x + 2 \) is \( (0, 1) \). If you substitute \( x = 0 \) into the equation, it becomes \( y < 2 \), and since \( 1 < 2 \), this ordered pair is indeed a solution. Another solution is \( (1, -1) \). Plugging \( x = 1 \) into the inequality gives \( y < -3(1) + 2 \), which simplifies to \( y < -1 \). Since \( -1 \) is not less than \(-1\), we can take \( (1, -2) \) instead, where \( -2 < -1 \) works perfectly.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium