phase, \( 400 \mathrm{~V}, 37 \mathrm{~kW} \) motor runs at a power factor of 0.87 . Determine: the apparent power drawn by the motor (Ans: 42.529 kVA ) 37 the reactive power generated by the motor. (Ans: 20.969 kVAr ) the current drawn by the motor. (Ans: 61.3849 A )
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To determine the apparent power (S) of the motor, we use the formula: \[ S = \frac{P}{\text{Power Factor}} \] So, with \( P = 37 \, \text{kW} \) and a power factor of 0.87, \[ S = \frac{37}{0.87} \approx 42.529 \, \text{kVA} \]. Next, to find the reactive power (Q), we can use the formula: \[ Q = \sqrt{S^2 - P^2} \] Calculating: \[ S^2 = (42.529)^2 \text{ and } P^2 = (37)^2 \] leads to \[ Q = \sqrt{(42.529)^2 - (37)^2} \approx 20.969 \, \text{kVAr} \]. Finally, the current (I) drawn by the motor can be determined using the formula: \[ I = \frac{S}{\sqrt{3} \times V} \] Where \( V = 400 \, V \), thus: \[ I = \frac{42.529 \, \text{kVA}}{\sqrt{3} \times 0.4} \approx 61.3849 \, A \]. Now you've got all the key figures for that motor! Keep the calculations rolling!