Use properties of exponents to simplify the given expression. Express the answer in exponential form. \[ 4^{3} \cdot 4^{5} \] \( 4^{3} \cdot 4^{5}=\square \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
When multiplying numbers with the same base, you simply add their exponents. In this case, we have \( 4^3 \cdot 4^5 \). So, we can calculate \( 3 + 5 \) to get \( 8 \). Thus, this simplifies to \( 4^8 \). So, \( 4^{3} \cdot 4^{5} = 4^{8} \). Keep in mind that mastering the properties of exponents not only helps you with calculations but also lays a solid foundation for understanding logarithms and advanced algebraic concepts! Exponents pop up everywhere, from science (like calculating compound interest) to technology (like data exponentials in software). Learning how to manipulate these properties means you’re well-equipped to tackle real-world problems where exponential growth is involved, such as population growth or viral spread!