Pregunta
upstudy study bank question image url

(e) The sketch alongside shows
the graphs of ,
and is the reflection of
in the -axis and is the
reflection of in the line .
(1) Determine the equation of .
(2) Determine the equation of .
(3) Explain why the -coordinate
of P can be calculated by solving
the equation .
(4) Calculate the coordinates of P .
(5) For which values of is ?

Ask by Sanders Cook. in South Africa
Jan 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

  1. Equation of :
  2. Equation of :
  3. Explanation for -coordinate of :
    The -coordinate of is found by solving .
  4. Coordinates of :
  5. Values of where :

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Beyond the Answer

To make sense of the transformations involving the functions mentioned, let’s dive a bit deeper!
The function opens downwards, and by reflecting it across the -axis, we get . This maintains symmetry and shows how flips horizontally, changing the sign of while keeping the output values in a similar range.
Reflecting across the line gives us . This transformation swaps and , which leads us to . Both and illustrate beautiful symmetries that make the analysis of intersections and relationships between these functions intriguing!
To find the -coordinate of point by solving the equation , consider that this equation represents the positions where the graphs of and intersect. It’s essential to recognize that both sides of the equation depict the respective values of each function. Thus, solving this gives a clear insight into their interaction points on the graph!
Now, let’s tackle the coordinates of . By rearranging the equation into standard form: , we can find values factoring out : . Hence, the solutions are and . Substituting back into or , we find the respective coordinates are and .
Lastly, to determine when , we set up the inequality . Solving this may involve squaring both sides to remove the square root, keeping track of valid ranges to ensure no extraneous solutions creep in. Expect to find the interval where allows both functions to interact while ensuring is indeed above in their respective outputs!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad