Pregunta
Write the other side of this equation so that it is true for all values of \( x \). \( \frac{1}{2}(6 x-10)-x= \)
Ask by Guerrero Turnbull. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The other side of the equation is \( 2x - 5 \).
Solución
To make the equation true for all values of \( x \), let's simplify the left side and express it in an equivalent form.
Given:
\[
\frac{1}{2}(6x - 10) - x
\]
**Step 1: Distribute the \(\frac{1}{2}\)**
\[
\frac{1}{2} \times 6x - \frac{1}{2} \times 10 - x = 3x - 5 - x
\]
**Step 2: Combine like terms**
\[
3x - x - 5 = 2x - 5
\]
**Final Equation:**
\[
\frac{1}{2}(6x - 10) - x = 2x - 5
\]
So, the other side of the equation that makes it true for all \( x \) is:
\[
2x - 5
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To find the other side of the equation that makes it true for all values of \( x \), we start by simplifying the left side. First, distribute \( \frac{1}{2} \): \[ \frac{1}{2}(6x - 10) = 3x - 5 \] Now, substitute this back into the equation: \[ 3x - 5 - x = 3x - x - 5 = 2x - 5 \] Therefore, the complete equation is: \[ \frac{1}{2}(6x - 10) - x = 2x - 5 \] So, the other side of the equation is \( 2x - 5 \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium