Find all real solutions. \( x^{2 / 9}=2 \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To solve the equation \( x^{2 / 9} = 2 \), start by raising both sides to the power of \( \frac{9}{2} \) to eliminate the fractional exponent. This gives you \( x = 2^{\frac{9}{2}} \), simplifying to \( x = 2^4 \sqrt{2} = 16 \sqrt{2} \). Thus, the real solution is \( x = 16\sqrt{2} \). However, don't forget to check if there are any negative solutions, as fractional exponents can sometimes lead to various types of roots. In this case, since we're taking an even root (the denominator is 9), \( x \) must be non-negative, confirming that \( x = 16\sqrt{2} \) is indeed the only solution.