Pregunta
upstudy study bank question image url

3. Given: \( f(x)=\left(\frac{1}{4}\right)^{x} \) Describe the transformation: 4. Given: \( f(x)=\left(\frac{1}{4}\right)^{x} \) Describe the transformation: Transformation: \( g(x)=\left(\frac{1}{4}\right)^{x}-3 \) 5. Given: \( f(x)=\left(\frac{1}{4}\right)^{x} \) Describe the transformation:

Ask by West Bryant. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function \( f(x) = \left(\frac{1}{4}\right)^{x} \) is an exponential decay function. - **Transformation 4**: The function \( g(x) = \left(\frac{1}{4}\right)^{x} - 3 \) shifts the graph of \( f(x) \) downward by 3 units. In summary, the transformation involves a vertical shift downward by 3 units.

Solución

To describe the transformations of the function \( f(x) = \left(\frac{1}{4}\right)^{x} \), we will analyze the changes made to the function in each case. ### 3. Transformation of \( f(x) = \left(\frac{1}{4}\right)^{x} \) The function \( f(x) = \left(\frac{1}{4}\right)^{x} \) is an exponential decay function. The base \( \frac{1}{4} \) is less than 1, which means that as \( x \) increases, \( f(x) \) decreases towards 0. ### 4. Transformation: \( g(x) = \left(\frac{1}{4}\right)^{x} - 3 \) In this case, the transformation from \( f(x) \) to \( g(x) \) involves a vertical shift. - **Vertical Shift Downward**: The function \( g(x) = f(x) - 3 \) indicates that the entire graph of \( f(x) \) is shifted downward by 3 units. This means that every point on the graph of \( f(x) \) is moved down 3 units. For example, if \( f(0) = 1 \), then \( g(0) = 1 - 3 = -2 \). ### 5. General Description of Transformation If we consider a general transformation of the form \( g(x) = f(x) + k \), where \( k \) is a constant: - If \( k > 0 \), the graph of \( f(x) \) shifts upward by \( k \) units. - If \( k < 0 \), the graph of \( f(x) \) shifts downward by \( |k| \) units. In the specific case of \( g(x) = \left(\frac{1}{4}\right)^{x} - 3 \), we have \( k = -3 \), indicating a downward shift of 3 units. In summary, the transformation from \( f(x) \) to \( g(x) \) is a vertical shift downward by 3 units.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

The function \( f(x) = \left(\frac{1}{4}\right)^{x} \) represents an exponential decay as \( x \) increases, starting from \( f(0) = 1 \). Now, considering the transformation \( g(x) = \left(\frac{1}{4}\right)^{x} - 3 \), this shifts the entire graph of \( f(x) \) downward by 3 units. So, the horizontal asymptote of the original function at \( y=0 \) shifts to \( y=-3 \). This transformation retains the decay nature but alters the overall graph position. Additionally, this kind of transformation is quite common in real-life applications. For example, if \( f(x) \) represented the amount of a substance remaining over time, the transformation \( g(x) \) could model that substance diminishing and reaching a certain baseline level (in this case, -3) due to a constant loss or limitation in a given scenario. It visually demonstrates not just decay, but how the environment might affect the residual quantity.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad