Pregunta
upstudy study bank question image url

\( -8 x+5 \) and \( -5 x+10 \)

Ask by Powell Chavez. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The two lines \( y = -8x + 5 \) and \( y = -5x + 10 \) intersect at the point \( \left( -\frac{5}{3},\ \frac{55}{3} \right) \).

Solución

It looks like you've provided two linear expressions: 1. \( y = -8x + 5 \) 2. \( y = -5x + 10 \) If you're looking to **find the point of intersection** between these two lines, you can do so by setting the equations equal to each other and solving for \( x \). Here's how you can do it step-by-step: ### Step 1: Set the Equations Equal to Each Other \[ -8x + 5 = -5x + 10 \] ### Step 2: Solve for \( x \) First, get all the \( x \)-terms on one side and the constant terms on the other: \[ -8x + 5 = -5x + 10 \] \[ -8x + 5x = 10 - 5 \] \[ -3x = 5 \] \[ x = \frac{5}{-3} = -\frac{5}{3} \] ### Step 3: Substitute \( x \) Back into One of the Original Equations to Find \( y \) You can use either equation. Let's use \( y = -5x + 10 \): \[ y = -5\left(-\frac{5}{3}\right) + 10 \] \[ y = \frac{25}{3} + 10 \] \[ y = \frac{25}{3} + \frac{30}{3} = \frac{55}{3} \] ### Step 4: Write the Point of Intersection \[ \left( -\frac{5}{3},\ \frac{55}{3} \right) \] ### Visualization To better understand the intersection, here's a quick visualization of both lines: - **Line 1:** \( y = -8x + 5 \) - **Line 2:** \( y = -5x + 10 \) ![Graph of the two lines showing intersection point](https://i.imgur.com/yourimageurl.png) *(Replace with an actual graph if needed)* ### Summary - **Intersection Point:** \( \left( -\frac{5}{3},\ \frac{55}{3} \right) \) This is the point where both lines meet on the Cartesian plane. If you had a different question in mind regarding these expressions, feel free to provide more details!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Did you know that linear equations like \( -8x + 5 \) and \( -5x + 10 \) can be graphed on a coordinate plane to visualize how they interact? When plotted, the point where these two lines intersect represents the solution to the system of equations. This intersection point reveals the value of \( x \) and \( y \) that satisfies both equations simultaneously! If you're solving for where these two equations equal each other, remember to be careful with your algebra! A common mistake is to overlook signs or to miscalculate coefficients when isolating \( x \). Start by setting them equal to each other: \( -8x + 5 = -5x + 10 \). Then, simplify step by step, keeping an eye out for those pesky negative signs!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad