Pregunta

Determine the volume generated by revolving the area between \( y = \sqrt{x} \) and the x-axis from \( x = 0 \) to \( x = 4 \) about the y-axis with the washer method.

Ask by Little Peters. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The volume is \( \frac{32\pi}{5} \).

Solución

To determine the volume generated by revolving the area between \( y = \sqrt{x} \) and the x-axis from \( x = 0 \) to \( x = 4 \) about the y-axis using the washer method, we will follow these steps: 1. **Identify the function and the limits of integration**: The function is \( y = \sqrt{x} \) and we are revolving around the y-axis from \( x = 0 \) to \( x = 4 \). 2. **Express \( x \) in terms of \( y \)**: Since we are revolving around the y-axis, we need to express \( x \) as a function of \( y \). From \( y = \sqrt{x} \), we can square both sides to get: \[ x = y^2 \] 3. **Determine the limits for \( y \)**: When \( x = 0 \), \( y = \sqrt{0} = 0 \). When \( x = 4 \), \( y = \sqrt{4} = 2 \). Therefore, the limits for \( y \) are from \( 0 \) to \( 2 \). 4. **Set up the volume integral**: The volume \( V \) of the solid of revolution can be calculated using the formula: \[ V = \pi \int_{a}^{b} [R(y)]^2 \, dy \] where \( R(y) \) is the radius of the washer at height \( y \). In this case, \( R(y) = y^2 \) (the distance from the y-axis to the curve). 5. **Write the integral**: The volume integral becomes: \[ V = \pi \int_{0}^{2} (y^2)^2 \, dy = \pi \int_{0}^{2} y^4 \, dy \] 6. **Calculate the integral**: Now we will compute the integral: \[ \int y^4 \, dy = \frac{y^5}{5} \] Evaluating this from \( 0 \) to \( 2 \): \[ \left[ \frac{y^5}{5} \right]_{0}^{2} = \frac{2^5}{5} - \frac{0^5}{5} = \frac{32}{5} \] 7. **Calculate the volume**: Now substituting back into the volume formula: \[ V = \pi \cdot \frac{32}{5} = \frac{32\pi}{5} \] Thus, the volume generated by revolving the area between \( y = \sqrt{x} \) and the x-axis from \( x = 0 \) to \( x = 4 \) about the y-axis is: \[ \boxed{\frac{32\pi}{5}} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the volume generated by revolving the area between \( y = \sqrt{x} \) and the x-axis from \( x = 0 \) to \( x = 4 \) about the y-axis using the washer method, we first need to express \( x \) in terms of \( y \). Since \( y = \sqrt{x} \), we can rewrite this as: \[ x = y^2. \] Next, we determine the limits for \( y \) by evaluating \( y \) at the bounds of \( x \): - When \( x = 0 \), \( y = \sqrt{0} = 0 \). - When \( x = 4 \), \( y = \sqrt{4} = 2 \). Thus, we are rotating around the y-axis from \( y = 0 \) to \( y = 2 \). The volume \( V \) generated by rotating around the y-axis is given by the formula: \[ V = \pi \int_{a}^{b} [R(y)]^2 - [r(y)]^2 \, dy, \] where \( R(y) \) is the outer radius and \( r(y) \) is the inner radius. In this case, since we are rotating the area between the curve \( y = \sqrt{x} \) and the x-axis, we do not have an inner radius. Therefore: \[ R(y) = y^2 \quad \text{and} \quad r(y) = 0. \] Substituting into the volume formula gives us: \[ V = \pi \int_{0}^{2} (y^2)^2 \, dy = \pi \int_{0}^{2} y^4 \, dy. \] Now we compute the integral: \[ V = \pi \left[ \frac{y^5}{5} \right]_{0}^{2} = \pi \left( \frac{2^5}{5} - \frac{0^5}{5} \right) = \pi \left( \frac{32}{5} \right). \] Therefore, the volume is: \[ V = \frac{32\pi}{5}. \] So the final volume generated by revolving the area is \( \frac{32\pi}{5} \) cubic units.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad