Pregunta
upstudy study bank question image url

3) \( 3 n^{2}-8 n+4 \)

Ask by Lee Higgins. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( 3n^{2} - 8n + 4 = (3n - 2)(n - 2) \)

Solución

To factor the quadratic expression \( 3n^{2} - 8n + 4 \), you can follow these steps: ### Step 1: Identify the Coefficients The given quadratic is in the form \( an^{2} + bn + c \), where: - \( a = 3 \) - \( b = -8 \) - \( c = 4 \) ### Step 2: Find Two Numbers That Multiply to \( a \times c \) and Add to \( b \) We need two numbers that multiply to \( 3 \times 4 = 12 \) and add up to \( -8 \). - The numbers are **-6** and **-2** because: - \( (-6) \times (-2) = 12 \) - \( (-6) + (-2) = -8 \) ### Step 3: Rewrite the Middle Term Using These Numbers Rewrite the expression by splitting the middle term using the numbers found: \[ 3n^{2} - 6n - 2n + 4 \] ### Step 4: Factor by Grouping Group the terms in pairs and factor out the common factors: \[ = (3n^{2} - 6n) + (-2n + 4) \\ = 3n(n - 2) - 2(n - 2) \] ### Step 5: Factor Out the Common Binomial Now, factor out the common binomial \((n - 2)\): \[ = (3n - 2)(n - 2) \] ### Final Factored Form \[ 3n^{2} - 8n + 4 = (3n - 2)(n - 2) \] **Therefore, the factored form of \( 3n^{2} - 8n + 4 \) is \((3n - 2)(n - 2)\).**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Did you know that quadratic expressions like \( 3n^{2} - 8n + 4 \) have been studied for centuries? The famous mathematician Bhaskara II, in the 12th century, developed methods for solving such equations, paving the way for modern algebra! It's incredible how these concepts have evolved, influencing countless scientific and engineering fields today. When working with polynomials like this one, a common mistake is neglecting to factor out the greatest common factor first, if there is one. Here, you actually can't simplify it further, but it’s essential to check! Also, when applying the quadratic formula, ensuring you keep track of the signs can make a world of difference in your final answer. Happy solving!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad