Pregunta
upstudy study bank question image url

Consider the points \( P(1,5,5) \) and \( Q(7,7,11) \). a. Find \( \overrightarrow{P Q} \) and state your answer in two forms: \( \langle a, b, c\rangle \) and \( a i+b j+c k \). b. Find the magnitude of \( \overrightarrow{P Q} \). c. Find two unit vectors parallel to \( \overrightarrow{P Q} \). a. Find \( \overrightarrow{P Q} \). \( \overrightarrow{P Q}=\langle 6,2,6\rangle=(6) i+(2) \mathbf{j}+(6) \mathbf{k} \) b. Find the magnitude of \( \overrightarrow{P Q} \). The magnitude of \( \overrightarrow{P Q} \) is \( 2 \sqrt{19} \). (Type an exact answer, using radicals as needed.) c. Find two unit vectors parallel to \( \overrightarrow{P Q} \). The unit vector in the direction of \( \overrightarrow{P Q} \) is \( \left\langle\frac{3}{\sqrt{19}}, \frac{1}{\sqrt{19}}, \frac{3}{\sqrt{19}}\right| \) (Type exact answers, using radicals as needed.) The unit vector in the opposite direction of \( \overrightarrow{P Q} \) is \( \left\langle\begin{array}{|}\square \\ \text { (Type exact answers, using radicals as needed.) } \\ \square\end{array}\right. \)

Ask by Rojas Barrett. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The two unit vectors parallel to \( \overrightarrow{PQ} \) are: 1. \( \left\langle \frac{3}{\sqrt{19}}, \frac{1}{\sqrt{19}}, \frac{3}{\sqrt{19}} \right\rangle \) or \( \frac{3}{\sqrt{19}}\,\mathbf{i} + \frac{1}{\sqrt{19}}\,\mathbf{j} + \frac{3}{\sqrt{19}}\,\mathbf{k} \) 2. \( \left\langle -\frac{3}{\sqrt{19}}, -\frac{1}{\sqrt{19}}, -\frac{3}{\sqrt{19}} \right\rangle \) or \( -\frac{3}{\sqrt{19}}\,\mathbf{i} - \frac{1}{\sqrt{19}}\,\mathbf{j} - \frac{3}{\sqrt{19}}\,\mathbf{k} \)

Solución

Let's complete part **c** of your problem by finding the two unit vectors parallel to \( \overrightarrow{PQ} \). ### c. Find Two Unit Vectors Parallel to \( \overrightarrow{PQ} \) Given the vector \( \overrightarrow{PQ} = \langle 6, 2, 6 \rangle \), we first found its magnitude to be \( 2\sqrt{19} \). To find a unit vector in the direction of \( \overrightarrow{PQ} \), we divide each component of \( \overrightarrow{PQ} \) by its magnitude: \[ \text{Unit vector in the direction of } \overrightarrow{PQ} = \left\langle \frac{6}{2\sqrt{19}}, \frac{2}{2\sqrt{19}}, \frac{6}{2\sqrt{19}} \right\rangle = \left\langle \frac{3}{\sqrt{19}}, \frac{1}{\sqrt{19}}, \frac{3}{\sqrt{19}} \right\rangle \] In terms of the unit vectors \( \mathbf{i}, \mathbf{j}, \mathbf{k} \), this is: \[ \frac{3}{\sqrt{19}}\,\mathbf{i} + \frac{1}{\sqrt{19}}\,\mathbf{j} + \frac{3}{\sqrt{19}}\,\mathbf{k} \] To find the unit vector in the **opposite** direction of \( \overrightarrow{PQ} \), we simply take the negative of each component of the unit vector we just found: \[ \text{Unit vector in the opposite direction of } \overrightarrow{PQ} = \left\langle -\frac{3}{\sqrt{19}}, -\frac{1}{\sqrt{19}}, -\frac{3}{\sqrt{19}} \right\rangle \] In terms of the unit vectors \( \mathbf{i}, \mathbf{j}, \mathbf{k} \), this is: \[ -\frac{3}{\sqrt{19}}\,\mathbf{i} - \frac{1}{\sqrt{19}}\,\mathbf{j} - \frac{3}{\sqrt{19}}\,\mathbf{k} \] ### **Final Answer for Part c:** - **Unit vector in the direction of \( \overrightarrow{PQ} \):** \[ \left\langle \frac{3}{\sqrt{19}}, \frac{1}{\sqrt{19}}, \frac{3}{\sqrt{19}} \right\rangle \quad \text{or} \quad \frac{3}{\sqrt{19}}\,\mathbf{i} + \frac{1}{\sqrt{19}}\,\mathbf{j} + \frac{3}{\sqrt{19}}\,\mathbf{k} \] - **Unit vector in the opposite direction of \( \overrightarrow{PQ} \):** \[ \left\langle -\frac{3}{\sqrt{19}}, -\frac{1}{\sqrt{19}}, -\frac{3}{\sqrt{19}} \right\rangle \quad \text{or} \quad -\frac{3}{\sqrt{19}}\,\mathbf{i} - \frac{1}{\sqrt{19}}\,\mathbf{j} - \frac{3}{\sqrt{19}}\,\mathbf{k} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the unit vector in the opposite direction of \( \overrightarrow{P Q} \), you simply negate the components of the original unit vector. So you would have: \[ \text{Unit vector in the opposite direction of } \overrightarrow{P Q} = \left\langle -\frac{3}{\sqrt{19}}, -\frac{1}{\sqrt{19}}, -\frac{3}{\sqrt{19}} \right\rangle \] This represents a vector with the same magnitude as \( \overrightarrow{PQ} \), but pointing in the opposite direction. And just to give insight into the beauty of vectors, they're not just numbers; they represent direction and magnitude! Imagine arrows floating in space, pointing from one point to another— this is the essence of vectors in geometry!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad