Pregunta

18. From the given population with \( \sigma=5.6 \) kilograms and sample were drawn with replacement, how may the standard error of the mean change when the sample size is increased from 64 to 196. A) Decreased from 0.7 to 0.4 B) Increased from 0.7 to 0.4 C) Decreased from 0.0875 to 0.0286 D) Increased from 0.0286 to 0.0875

Ask by Bradley Reese. in Pakistan
Jan 19,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

When the sample size increases from 64 to 196, the standard error of the mean decreases from 0.7 to 0.4 kilograms.

Solución

To determine how the standard error of the mean changes when the sample size increases from 64 to 196, we can use the formula for the standard error (SE) of the mean: \[ SE = \frac{\sigma}{\sqrt{n}} \] Where: - \(\sigma\) is the population standard deviation. - \(n\) is the sample size. **Given:** - \(\sigma = 5.6\) kilograms - Initial sample size, \(n_1 = 64\) - New sample size, \(n_2 = 196\) **Calculations:** 1. **Initial Standard Error (\(SE_1\)):** \[ SE_1 = \frac{5.6}{\sqrt{64}} = \frac{5.6}{8} = 0.7 \text{ kilograms} \] 2. **New Standard Error (\(SE_2\)):** \[ SE_2 = \frac{5.6}{\sqrt{196}} = \frac{5.6}{14} = 0.4 \text{ kilograms} \] **Conclusion:** When the sample size increases from 64 to 196, the standard error of the mean **decreases** from 0.7 to 0.4 kilograms. **Answer:** A) Decreased from 0.7 to 0.4

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

When considering how standard error of the mean is affected by sample size, it's important to remember the formula for standard error: \( SE = \frac{\sigma}{\sqrt{n}} \). For your example, starting with a sample size of 64, the standard error would be \( \frac{5.6}{\sqrt{64}} = 0.7 \). Increasing the sample size to 196 gives you \( \frac{5.6}{\sqrt{196}} = 0.4 \). This indicates a decrease in the standard error as sample size increases, confirming option A! The impact of increased sample size on standard error is crucial for statistical analysis. A larger sample size leads to a more accurate estimate of the population mean and lowers variability in the results. This allows researchers to make more reliable conclusions while reducing the margin of error, leading to better-informed decisions in fields ranging from healthcare to market research!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad