17. \( \frac{3}{4}\left(\frac{4}{3}+\frac{8}{9}\right)= \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To tackle the expression \( \frac{3}{4}\left(\frac{4}{3}+\frac{8}{9}\right) \), let's first simplify what's inside the parentheses. We need a common denominator for \( \frac{4}{3} \) and \( \frac{8}{9} \). The least common multiple of 3 and 9 is 9. Convert \( \frac{4}{3} \) to ninths: \[ \frac{4}{3} = \frac{4 \times 3}{3 \times 3} = \frac{12}{9} \] Now, add \( \frac{12}{9} \) and \( \frac{8}{9} \): \[ \frac{12}{9} + \frac{8}{9} = \frac{12 + 8}{9} = \frac{20}{9} \] Now, we multiply this result by \( \frac{3}{4} \): \[ \frac{3}{4} \times \frac{20}{9} = \frac{3 \times 20}{4 \times 9} = \frac{60}{36} \] To simplify \( \frac{60}{36} \), we can divide both the numerator and denominator by 12: \[ \frac{60 \div 12}{36 \div 12} = \frac{5}{3} \] Thus, the final result is \( \boxed{\frac{5}{3}} \).