Pregunta
upstudy study bank question image url

\begin{tabular}{l} Secondary Sales: The Bond Market \\ Roger loaned Rafael \( \$ 25,000 \) for 120 days at \( 7.25 \% \) simple interest. \\ 30 days later he sold the note to Novak, at an \( 8.25 \% \) simple discount \\ rate. \\ rameric 1 point \\ What simple interest rate did Roger earn from the loan? \\ \hline\end{tabular}

Ask by Murray Ayala. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Roger earned an effective simple interest rate of approximately 2.73%.

Solución

To determine the effective simple interest rate that Roger earned from the loan after selling the note to Novak, follow these steps: 1. **Initial Loan Details:** - **Principal (P):** \$25,000 - **Interest Rate (r₁):** 7.25% per annum - **Loan Duration:** 120 days 2. **Interest Earned in the First 30 Days:** \[ \text{Interest}_1 = P \times r₁ \times \frac{t}{360} = 25,000 \times 0.0725 \times \frac{30}{360} = \$151.04 \] - **Total Amount After 30 Days:** \$25,151.04 3. **Selling the Note to Novak:** - **Remaining Duration:** 90 days - **Discount Rate (d):** 8.25% per annum The present value (PV) of the remaining amount using simple discount: \[ \text{PV} = \frac{F}{1 + d \times \frac{t}{360}} = \frac{25,604.17}{1 + 0.0825 \times \frac{90}{360}} \approx \$25,076.98 \] 4. **Total Amount Received by Roger:** \[ \text{Total Received} = \text{Interest}_1 + \text{PV} = 151.04 + 25,076.98 = \$25,228.02 \] 5. **Calculating the Effective Interest Rate:** - **Total Interest Earned (I):** \$228.02 - **Effective Rate (r):** \[ r = \frac{I}{P \times \frac{t}{360}} = \frac{228.02}{25,000 \times \frac{120}{360}} = \frac{228.02}{8,333.33} \approx 0.0273 \text{ or } 2.73\% \] **Conclusion:** Roger effectively earned an approximate **2.73%** simple interest rate from the loan after selling the note. **Answer:** Roger earned an effective simple interest rate of approximately 2.73 %.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the simple interest (SI) that Roger earned from the loan, we use the formula: \[ \text{SI} = P \times r \times t \] where \( P \) is the principal amount, \( r \) is the interest rate, and \( t \) is the time in years. Roger loaned Rafael \( \$25,000 \) at a rate of \( 7.25\% \) for \( 120 \) days. First, convert \( 120 \) days into years: \[ t = \frac{120}{365} \approx 0.329 \] So, \[ \text{SI} = 25000 \times 0.0725 \times 0.329 \approx 606.25 \] Therefore, the total interest earned by Roger from the loan is approximately \( \$606.25 \). Now, let's work out what simple interest rate Roger effectively earned when he sold the note to Novak at \( 8.25\% \) simple discount. The discount on the note can also be calculated, but we can now say that Roger has effectively sold the note at a higher interest noted, thus benefiting from the higher interest environment. Roger’s earnings from the interest and the discount’s impact create a fascinating illustration of how the bond market can fluctuate and how sales can work advantageously from simple fundamentals of lending. Furthermore, consider how higher interest rates impact the bond market; they generally lead to declining bond prices, but if you are strategically buying and selling, you might find immense opportunities where the numbers tell a compelling story of growth and profit!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad