Let \( \mathbf{u}=\langle 9,-8\rangle, \mathbf{v}=\langle-1,7\rangle \), and \( \mathbf{w}=\langle 0,-8\rangle \). Carry out the following computation. Find \( |\mathbf{u}+\mathbf{v}+\mathbf{w}| \). \( |\mathbf{u}+\mathbf{v}+\mathbf{w}|=\square \) (Type an exact answer, using radicals as needed.)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find \( |\mathbf{u}+\mathbf{v}+\mathbf{w}| \), we first need to compute the sum of the vectors \( \mathbf{u} \), \( \mathbf{v} \), and \( \mathbf{w} \). 1. Start by calculating \( \mathbf{u} + \mathbf{v} + \mathbf{w} \): \[ \mathbf{u} + \mathbf{v} + \mathbf{w} = \langle 9, -8 \rangle + \langle -1, 7 \rangle + \langle 0, -8 \rangle \] 2. We can add the components: - For the x-components: \( 9 - 1 + 0 = 8 \) - For the y-components: \( -8 + 7 - 8 = -9 \) So, the sum of the vectors is: \[ \mathbf{u} + \mathbf{v} + \mathbf{w} = \langle 8, -9 \rangle \] 3. Now we find the magnitude of the resulting vector: \[ |\mathbf{u} + \mathbf{v} + \mathbf{w}| = |\langle 8, -9 \rangle| = \sqrt{8^2 + (-9)^2} \] \[ = \sqrt{64 + 81} = \sqrt{145} \] Therefore, the final answer is: \[ |\mathbf{u} + \mathbf{v} + \mathbf{w}| = \sqrt{145} \]