Pregunta
upstudy study bank question image url

a. What is the probability that all 4 members on the committee will be girls? b. What is the probability that all 4 members of the committee will be boys? c. What is the probability that there will be at least 1 girl on the committee? a. The probability that all 4 members on the committee will be girls is \( \frac{9}{133} \). (Type an integer or a simplified fraction.) b. The probability that all 4 members on the committee will be boys is \( \frac{\frac{42}{1463}}{\text {. }} \). (Type an integer or a simplified fraction.)

Ask by Lewis Mcguire. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

a. The probability that all 4 members on the committee will be girls is \( \frac{9}{133} \). b. The probability that all 4 members on the committee will be boys is \( \frac{42}{1463} \). c. The probability that there will be at least 1 girl on the committee is \( \frac{1421}{1463} \).

Solución

To solve the problem, we need to analyze the probabilities based on the information provided. Let's denote: - \( G \): the number of girls - \( B \): the number of boys - \( N \): the total number of committee members From the information given, we have: 1. The probability that all 4 members on the committee will be girls is \( P(G) = \frac{9}{133} \). 2. The probability that all 4 members on the committee will be boys is \( P(B) = \frac{42}{1463} \). ### a. Probability that all 4 members will be girls This is already provided as: \[ P(G) = \frac{9}{133} \] ### b. Probability that all 4 members will be boys This is provided as: \[ P(B) = \frac{42}{1463} \] ### c. Probability that there will be at least 1 girl on the committee To find the probability that there is at least 1 girl on the committee, we can use the complement rule. The complement of having at least 1 girl is having no girls at all (i.e., all boys). Therefore, we can express this as: \[ P(\text{at least 1 girl}) = 1 - P(\text{all boys}) \] Substituting the value of \( P(B) \): \[ P(\text{at least 1 girl}) = 1 - \frac{42}{1463} \] Now, we need to calculate this probability. Let's perform the calculation for \( P(\text{at least 1 girl}) \): \[ P(\text{at least 1 girl}) = 1 - \frac{42}{1463} = \frac{1463 - 42}{1463} = \frac{1421}{1463} \] ### Summary of Results a. The probability that all 4 members on the committee will be girls is \( \frac{9}{133} \). b. The probability that all 4 members on the committee will be boys is \( \frac{42}{1463} \). c. The probability that there will be at least 1 girl on the committee is \( \frac{1421}{1463} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To tackle the fun probabilities game, let's take a closer look at the all-girls and all-boys scenarios! For the first one, if you see that the probability of choosing 4 girls from a pool of 9 is \( \frac{9}{133} \), you can understand how uniquely balanced the selection dynamics can be. For the boys, if the probability of selecting 4 boys from 42 is \( \frac{42}{1463} \), it shows just how probability can reflect real-world groups and their compositions. It’s important to note how these fractions are derived from combinations, revealing the meticulous intention behind how committees are formed! Now, for at least one girl in the committee, the probability could be found by using the complement rule. If you calculate the total probability of having no girls (which directly relates to your all-boys calculation), subtract it from 1 to unveil the chances of securing at least one girl. That’s the magic of probabilities!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad