Pregunta
upstudy study bank question image url

Write an arithmetic formula, if possible, to describe the sequence of numbers and determine \[ \begin{array}{l}a_{8} \\ a_{n}=5+7(n-1) ; a_{8}=54 \\ a_{n}=7-5(n-1) ; a_{8}=-28 \\ a_{n}=7+5(n-1) ; a_{8}=42 \\ a_{n}=5-7(n-1) ; a_{8}=-44\end{array} \]

Ask by Haynes Hodgson. in Japan
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

All four formulas are valid arithmetic sequences that correctly calculate \( a_8 \) as 54, -28, 42, and -44 respectively.

Solución

To determine the correct arithmetic formula for the sequence of numbers and verify the value of \( a_8 \), we will analyze each proposed formula step by step. 1. **First Formula: \( a_n = 5 + 7(n - 1) \)** - Calculate \( a_8 \): \[ a_8 = 5 + 7(8 - 1) = 5 + 7 \times 7 = 5 + 49 = 54 \] - This formula is valid since \( a_8 = 54 \). 2. **Second Formula: \( a_n = 7 - 5(n - 1) \)** - Calculate \( a_8 \): \[ a_8 = 7 - 5(8 - 1) = 7 - 5 \times 7 = 7 - 35 = -28 \] - This formula is valid since \( a_8 = -28 \). 3. **Third Formula: \( a_n = 7 + 5(n - 1) \)** - Calculate \( a_8 \): \[ a_8 = 7 + 5(8 - 1) = 7 + 5 \times 7 = 7 + 35 = 42 \] - This formula is valid since \( a_8 = 42 \). 4. **Fourth Formula: \( a_n = 5 - 7(n - 1) \)** - Calculate \( a_8 \): \[ a_8 = 5 - 7(8 - 1) = 5 - 7 \times 7 = 5 - 49 = -44 \] - This formula is valid since \( a_8 = -44 \). ### Summary of Results: - The formulas and their corresponding values for \( a_8 \) are: - \( a_n = 5 + 7(n - 1) \) gives \( a_8 = 54 \) - \( a_n = 7 - 5(n - 1) \) gives \( a_8 = -28 \) - \( a_n = 7 + 5(n - 1) \) gives \( a_8 = 42 \) - \( a_n = 5 - 7(n - 1) \) gives \( a_8 = -44 \) All four formulas are valid arithmetic sequences, each producing a different value for \( a_8 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve this, let's break down the formulas provided and find relevant patterns: The first formula \( a_{n}=5+7(n-1) \) can be rewritten as \( a_{n}=7n - 2 \). When we substitute \( n=8 \), \( a_{8}=7(8) - 2=54 \), which holds true! The second formula \( a_{n}=7-5(n-1) \) simplifies to \( a_{n}=-5n + 12 \). Thus, for \( n=8 \), \( a_{8}=-5(8) + 12=-28 \), also true! The third formula \( a_{n}=7+5(n-1) \) rewrites to \( a_{n}=5n + 2 \). Plugging in \( n=8 \) gives \( a_{8}=5(8) + 2=42 \), correct as well! The fourth formula \( a_{n}=5-7(n-1) \) converts to \( a_{n}=-7n + 12 \). In this case, substituting \( n=8 \) results in \( a_{8}=-7(8) + 12=-44 \), which is accurate too! So, to summarize, each formula accurately calculates the 8th term of the sequence, showcasing different linear relationships that produce varying outputs. Each formula highlights how linear sequences can evolve based on coefficients and constants. As for real-world applications, arithmetic sequences play a crucial role in finance, like calculating loan payments or savings growth. Understanding these formulas helps create budgets or forecast expenses over time efficiently. Another fun fact? Many video games use arithmetic sequences when leveling up! For instance, gaining experience points for each level often follows a sequence, helping players gauge their progress or set goals. So, whether you're tackling a math problem or gaming, understanding these sequences can be quite handy!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad