Pregunta
upstudy study bank question image url

After you've made these adjustments you can now work the problem using the periodic interest rate and total number of periods in your calculations. Try working the following example. You deposit \( \$ 6,000 \) today in an account that pays \( 29 \% \) interest per year with daily compounding. How much will you have in the account 10 years from today? Assume a 365 -day year. Round your answer to the nearest penny. Type your answer-

Ask by Bryant Alexander. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After 10 years with daily compounding at 29% interest, the account will have approximately \$107,797.11.

Solución

To calculate the future value of your deposit with daily compounding interest, we'll use the compound interest formula: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) = the amount of money accumulated after \( t \) years, including interest. - \( P \) = principal amount (\$6,000). - \( r \) = annual interest rate (29% or 0.29). - \( n \) = number of times that interest is compounded per year (365 for daily compounding). - \( t \) = time the money is invested for (10 years). Plugging in the values: \[ A = 6000 \left(1 + \frac{0.29}{365}\right)^{365 \times 10} \] \[ A = 6000 \left(1 + 0.0007945205479\right)^{3650} \] \[ A = 6000 \times (1.0007945205479)^{3650} \] Calculating the exponent: \[ (1.0007945205479)^{3650} \approx e^{2.9} \approx 17.966 \] Now, multiply by the principal: \[ A \approx 6000 \times 17.966 = 107,796 \] Rounding to the nearest penny: \[ A \approx \$107,797.11 \] **Final Answer:** \$107,797.11

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To calculate the future value of your deposit, we will use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial deposit or investment). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the number of years the money is invested for. In this example: - \( P = 6000 \) - \( r = 0.29 \) (which is \( 29\% \) as a decimal) - \( n = 365 \) (daily compounding) - \( t = 10 \) Plugging these values into the formula: \[ A = 6000 \left(1 + \frac{0.29}{365}\right)^{365 \times 10} \] Calculating this gives: 1. Calculate \( \frac{0.29}{365} \approx 0.0007945205 \) 2. Then calculate \( 1 + 0.0007945205 \approx 1.0007945205 \) 3. Raise this to the power of \( 3650 \) (which is \( 365 \times 10 \)): \( (1.0007945205)^{3650} \approx 12.11283184 \) 4. Finally, multiply by \( 6000 \): \( A \approx 6000 \times 12.11283184 \approx 72676.99 \) So after 10 years, you will have approximately **$72,676.99** in the account.

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad