7.6.7 Check Your Understanding \( \triangle N T L \) is a triangle where \( m \angle N T L=90^{\circ}, m \angle T L N=45^{\circ} \) and \( N T=\frac{\sqrt{3}}{2} \). What is the length of \( \overline{T L} \) ? o \( \sqrt{3} \) o \( \frac{\sqrt{3}}{2} \) o \( \frac{\sqrt{6}}{2} \) o \( \sqrt{6} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
In triangle \( N T L \), we have a right triangle with \( m \angle T L N = 45^{\circ} \). This means that \( \triangle N T L \) is a special 45-45-90 triangle. In such triangles, the lengths of the legs are equal, and the length of the hypotenuse is \( \sqrt{2} \) times the length of each leg. Given that \( N T = \frac{\sqrt{3}}{2} \), we can find that \( T L \) is equal to \( N T \) since both legs are the same length in a 45-45-90 triangle. Therefore, \( \overline{T L} = \frac{\sqrt{3}}{2} \). If you want to solve this using the Pythagorean theorem, you can confirm that the sum of the squares of the legs equals the square of the hypotenuse. For our legs, it simplifies to \( \left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 = N T^2 \). You'll find that both approaches bring you to the same delightful answer, proving how versatile geometry can be!