Responder
Here are the solutions to the fraction addition and subtraction problems:
a. \(\frac{5}{8} + \frac{1}{4} = \frac{7}{8}\)
b. \(\frac{6}{10} - \frac{2}{5} = \frac{1}{5}\)
c. \(\frac{8}{12} - \frac{3}{6} = \frac{1}{6}\)
d. \(\frac{2}{3} + \frac{4}{9} = 1 \frac{1}{9}\) or \(\frac{10}{9}\)
e. \(\frac{4}{5} + \frac{8}{10} = 1 \frac{3}{5}\) or \(\frac{8}{5}\)
f. \(\frac{3}{4} - \frac{2}{3} = \frac{1}{12}\)
g. \(\frac{4}{9} - \frac{1}{3} = \frac{1}{9}\)
h. \(\frac{1}{4} + \frac{4}{12} = \frac{7}{12}\)
i. \(\frac{3}{5} + \frac{1}{3} = \frac{14}{15}\)
j. \(\frac{1}{2} - \frac{1}{5} = \frac{3}{10}\)
k. \(\frac{5}{6} - \frac{1}{2} = \frac{1}{3}\)
l. \(\frac{1}{2} + \frac{1}{3} = \frac{5}{6}\)
Solución
Sure, let's solve each of the addition and subtraction fraction problems step by step.
### a. \(\frac{5}{8} + \frac{1}{4}\)
**Step 1:** Find a common denominator. The least common denominator (LCD) of 8 and 4 is 8.
\[
\frac{1}{4} = \frac{2}{8}
\]
**Step 2:** Add the fractions.
\[
\frac{5}{8} + \frac{2}{8} = \frac{7}{8}
\]
**Answer:** \(\frac{7}{8}\)
---
### b. \(\frac{6}{10} - \frac{2}{5}\)
**Step 1:** Find a common denominator. The LCD of 10 and 5 is 10.
\[
\frac{2}{5} = \frac{4}{10}
\]
**Step 2:** Subtract the fractions.
\[
\frac{6}{10} - \frac{4}{10} = \frac{2}{10} = \frac{1}{5}
\]
**Answer:** \(\frac{1}{5}\)
---
### c. \(\frac{8}{12} - \frac{3}{6}\)
**Step 1:** Simplify the fractions.
\[
\frac{8}{12} = \frac{2}{3}, \quad \frac{3}{6} = \frac{1}{2}
\]
**Step 2:** Find a common denominator. The LCD of 3 and 2 is 6.
\[
\frac{2}{3} = \frac{4}{6}, \quad \frac{1}{2} = \frac{3}{6}
\]
**Step 3:** Subtract the fractions.
\[
\frac{4}{6} - \frac{3}{6} = \frac{1}{6}
\]
**Answer:** \(\frac{1}{6}\)
---
### d. \(\frac{2}{3} + \frac{4}{9}\)
**Step 1:** Find a common denominator. The LCD of 3 and 9 is 9.
\[
\frac{2}{3} = \frac{6}{9}
\]
**Step 2:** Add the fractions.
\[
\frac{6}{9} + \frac{4}{9} = \frac{10}{9} = 1 \frac{1}{9}
\]
**Answer:** \(1 \frac{1}{9}\) or \(\frac{10}{9}\)
---
### e. \(\frac{4}{5} + \frac{8}{10}\)
**Step 1:** Simplify \(\frac{8}{10}\).
\[
\frac{8}{10} = \frac{4}{5}
\]
**Step 2:** Add the fractions.
\[
\frac{4}{5} + \frac{4}{5} = \frac{8}{5} = 1 \frac{3}{5}
\]
**Answer:** \(1 \frac{3}{5}\) or \(\frac{8}{5}\)
---
### f. \(\frac{3}{4} - \frac{2}{3}\)
**Step 1:** Find a common denominator. The LCD of 4 and 3 is 12.
\[
\frac{3}{4} = \frac{9}{12}, \quad \frac{2}{3} = \frac{8}{12}
\]
**Step 2:** Subtract the fractions.
\[
\frac{9}{12} - \frac{8}{12} = \frac{1}{12}
\]
**Answer:** \(\frac{1}{12}\)
---
### g. \(\frac{4}{9} - \frac{1}{3}\)
**Step 1:** Find a common denominator. The LCD of 9 and 3 is 9.
\[
\frac{1}{3} = \frac{3}{9}
\]
**Step 2:** Subtract the fractions.
\[
\frac{4}{9} - \frac{3}{9} = \frac{1}{9}
\]
**Answer:** \(\frac{1}{9}\)
---
### h. \(\frac{1}{4} + \frac{4}{12}\)
**Step 1:** Simplify \(\frac{4}{12}\).
\[
\frac{4}{12} = \frac{1}{3}
\]
**Step 2:** Find a common denominator. The LCD of 4 and 3 is 12.
\[
\frac{1}{4} = \frac{3}{12}, \quad \frac{1}{3} = \frac{4}{12}
\]
**Step 3:** Add the fractions.
\[
\frac{3}{12} + \frac{4}{12} = \frac{7}{12}
\]
**Answer:** \(\frac{7}{12}\)
---
### i. \(\frac{3}{5} + \frac{1}{3}\)
**Step 1:** Find a common denominator. The LCD of 5 and 3 is 15.
\[
\frac{3}{5} = \frac{9}{15}, \quad \frac{1}{3} = \frac{5}{15}
\]
**Step 2:** Add the fractions.
\[
\frac{9}{15} + \frac{5}{15} = \frac{14}{15}
\]
**Answer:** \(\frac{14}{15}\)
---
### j. \(\frac{1}{2} - \frac{1}{5}\)
**Step 1:** Find a common denominator. The LCD of 2 and 5 is 10.
\[
\frac{1}{2} = \frac{5}{10}, \quad \frac{1}{5} = \frac{2}{10}
\]
**Step 2:** Subtract the fractions.
\[
\frac{5}{10} - \frac{2}{10} = \frac{3}{10}
\]
**Answer:** \(\frac{3}{10}\)
---
### k. \(\frac{5}{6} - \frac{1}{2}\)
**Step 1:** Find a common denominator. The LCD of 6 and 2 is 6.
\[
\frac{1}{2} = \frac{3}{6}
\]
**Step 2:** Subtract the fractions.
\[
\frac{5}{6} - \frac{3}{6} = \frac{2}{6} = \frac{1}{3}
\]
**Answer:** \(\frac{1}{3}\)
---
### l. \(\frac{1}{2} + \frac{1}{3}\)
**Step 1:** Find a common denominator. The LCD of 2 and 3 is 6.
\[
\frac{1}{2} = \frac{3}{6}, \quad \frac{1}{3} = \frac{2}{6}
\]
**Step 2:** Add the fractions.
\[
\frac{3}{6} + \frac{2}{6} = \frac{5}{6}
\]
**Answer:** \(\frac{5}{6}\)
---
If you need further explanations or assistance with any of these problems, feel free to ask!
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución