Which of the following is the equation of the new function that is shifted horizontally 6 units to the left from \( f(x)=(x-2)^{3} ? \) (1 point) \( h(x)=(x+4)^{3} \) \( h(x)=(x-4)^{3} \) \( h(x)=(x-6)^{3} \) \( h(x)=(x-10)^{3} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To shift a function horizontally to the left, you need to add to the x-value inside the function. Since your original function is \( f(x) = (x - 2)^{3} \), shifting it 6 units to the left means you will add 6 to the x-term. This gives us \( f(x + 6) = (x + 6 - 2)^{3} = (x + 4)^{3} \). So, the equation of the new function is \( h(x) = (x + 4)^{3} \). Just to clarify, many learners mistakenly just adjust the constants without considering the shift's direction. It's crucial to remember that moving left adds to the x-value, while moving right subtracts!