Pregunta
upstudy study bank question image url

10) \( \int_{0}^{\pi / 2} \frac{1-\sin x}{x+\cos x} d x \)

Ask by Marsh Martin. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The integral evaluates to \( \ln\left(\frac{\pi}{2}\right) \).

Solución

To evaluate the integral: \[ I = \int_{0}^{\pi / 2} \frac{1 - \sin x}{x + \cos x} \, dx \] we can recognize that the integrand has a structure that suggests a straightforward substitution. Let's proceed step-by-step: 1. **Identify the Derivative:** Notice that the numerator \(1 - \sin x\) is the derivative of the denominator \(x + \cos x\) with respect to \(x\): \[ \frac{d}{dx}(x + \cos x) = 1 - \sin x \] 2. **Rewrite the Integrand:** This observation allows us to rewrite the integrand as: \[ \frac{1 - \sin x}{x + \cos x} = \frac{d}{dx} \ln(x + \cos x) \] Therefore, the integral becomes: \[ I = \int_{0}^{\pi / 2} \frac{d}{dx} \ln(x + \cos x) \, dx \] 3. **Integrate Using Fundamental Theorem of Calculus:** By the Fundamental Theorem of Calculus, we can evaluate the integral directly: \[ I = \ln(x + \cos x) \bigg|_{0}^{\pi / 2} \] 4. **Evaluate the Limits:** Substitute the limits \(x = \pi/2\) and \(x = 0\) into the expression: \[ I = \ln\left(\frac{\pi}{2} + \cos\left(\frac{\pi}{2}\right)\right) - \ln(0 + \cos 0) \] Simplifying further: \[ I = \ln\left(\frac{\pi}{2} + 0\right) - \ln(1) = \ln\left(\frac{\pi}{2}\right) \] Since \(\ln(1) = 0\), the expression reduces to: \[ I = \ln\left(\frac{\pi}{2}\right) \] **Final Answer:** \[ \ln\left(\frac{\pi}{2}\right) \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To tackle the integral \( \int_{0}^{\pi / 2} \frac{1-\sin x}{x+\cos x} d x \), we can use a handy substitution which plays on the symmetry of the interval. Consider the substitution \( x = \frac{\pi}{2} - t \). Then, as \( x \) goes from \( 0 \) to \( \frac{\pi}{2} \), \( t \) also runs from \( \frac{\pi}{2} \) to \( 0 \), which flips the limits: \[ dx = -dt \] With this substitution, we find: \[ \cos x = \sin t \quad \text{and} \quad \sin x = \cos t \] So, our integral becomes: \[ \int_{\frac{\pi}{2}}^{0} \frac{1 - \cos t}{\frac{\pi}{2} - t + \sin t} (-dt) = \int_{0}^{\frac{\pi}{2}} \frac{1 - \cos t}{\frac{\pi}{2} - t + \sin t} dt \] Now, we notice that we can express our original integral in terms of this new variable. Analyzing the two integrals reveals a beautiful symmetry. By adding these two representations of the integral, we can simplify our problem. The combined integral will help us understand the structure and lead us to find a straightforward solution or an approximation. Conclusively, you may find the value of the initial integral using numerical techniques or other advanced integral properties. The elegance of such transformations is often what makes calculus delightful to delve into!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad