61. A \( 50 .- \) Newton horizontal force is needed to keep an object weighing 500 . Newtons moving at a constant velocity of 2.0 meters per second across a horizontal surface. The magnitude of the frictional force acting on the object is \( \begin{array}{ll}\text { A) } 500 . \mathrm{N} & \text { B) } 450 . \mathrm{N} \\ \text { C) } 50 . \mathrm{N} & \text { D) } 0 \mathrm{~N}\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To keep the object moving at a constant velocity, the applied force must balance the frictional force acting against it. According to Newton’s first law, if the velocity is constant, the net force acting on the object is zero. Therefore, the horizontal force of \( 50 \) Newtons must be equal to the frictional force. This leads us to conclude that the magnitude of the frictional force is \( 50 \) Newtons. Thus, the correct answer is **C) 50 N**. The key here is recognizing that constant velocity implies that all forces must be balanced, which means the applied force and frictional force are equal in magnitude but opposite in direction.