Pregunta
upstudy study bank question image url

Numeric 1 point I invested \( \$ 8,000 \) in Contrapolar Power Systems stock, and 95 days later I sold it for \( \$ 5,243 \). What simple interest rate was this equivalent to earning? Type your answer...

Ask by French Bird. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The investment resulted in a loss of approximately 132%.

Solución

To find the simple interest rate equivalent to the investment, we can use the formula for simple interest: \[ I = P \cdot r \cdot t \] Where: - \( I \) is the interest earned, - \( P \) is the principal amount (initial investment), - \( r \) is the interest rate (as a decimal), - \( t \) is the time in years. First, we need to calculate the interest earned \( I \): \[ I = \text{Final Amount} - \text{Principal} = 5243 - 8000 \] Next, we convert the time from days to years. Since there are 365 days in a year: \[ t = \frac{95}{365} \] Now we can rearrange the simple interest formula to solve for \( r \): \[ r = \frac{I}{P \cdot t} \] Let's calculate \( I \), \( t \), and then \( r \). 1. Calculate \( I \): \[ I = 5243 - 8000 \] 2. Calculate \( t \): \[ t = \frac{95}{365} \] 3. Finally, calculate \( r \): \[ r = \frac{I}{8000 \cdot t} \] Now, let's perform these calculations step by step. First, calculate \( I \) and \( t \). Calculate the value by following steps: - step0: Calculate: \(5243-8000\) - step1: Subtract the numbers: \(-2757\) Calculate or simplify the expression \( 95 / 365 \). Calculate the value by following steps: - step0: Calculate: \(\frac{95}{365}\) - step1: Reduce the fraction: \(\frac{19}{73}\) 1. The interest earned \( I \) is: \[ I = 5243 - 8000 = -2757 \] 2. The time \( t \) in years is: \[ t = \frac{95}{365} \approx 0.2603 \text{ years} \] Now, we can calculate the interest rate \( r \) using the formula: \[ r = \frac{I}{P \cdot t} \] Substituting the values we have: \[ r = \frac{-2757}{8000 \cdot 0.2603} \] Let's calculate \( r \). Calculate the value by following steps: - step0: Calculate: \(\frac{-2757}{\left(8000\left(\frac{95}{365}\right)\right)}\) - step1: Remove the parentheses: \(\frac{-2757}{8000\left(\frac{95}{365}\right)}\) - step2: Reduce the fraction: \(\frac{-2757}{8000\times \frac{19}{73}}\) - step3: Multiply the numbers: \(\frac{-2757}{\frac{152000}{73}}\) - step4: Multiply by the reciprocal: \(-2757\times \frac{73}{152000}\) - step5: Multiply: \(-\frac{2757\times 73}{152000}\) - step6: Multiply: \(-\frac{201261}{152000}\) The interest rate \( r \) is calculated as: \[ r = -\frac{201261}{152000} \approx -1.32 \] To express this as a percentage, we multiply by 100: \[ r \approx -132\% \] This indicates a loss rather than a gain, meaning the investment resulted in a negative return. Therefore, the equivalent simple interest rate is approximately \(-132\%\).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the simple interest rate, we can use the formula for simple interest: \[I = P \times r \times t\] Where: - \(I\) is the interest earned, - \(P\) is the principal amount (initial investment), - \(r\) is the interest rate (in decimal), - \(t\) is time in years. First, calculate the interest earned: \[ I = 5243 - 8000 = -2757 \] Now, convert 95 days into years: \[ t = \frac{95}{365} \approx 0.2603 \text{ years} \] Next, rearranging the formula for \(r\), we have: \[ r = \frac{I}{P \times t} \] Substituting the values: \[ r = \frac{-2757}{8000 \times 0.2603} \approx -0.1310 \] To express the interest rate as a percentage, multiply by 100: \[ r \approx -13.10\% \] So, the simple interest rate was about -13.10%.

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad