Pregunta
upstudy study bank question image url

Create an artwork representing an algebraic expression labeling each part (constant, coefficient, term variable) and explaining how the properties apply to simplify it.

Ask by Boone Valdez. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Algebraic Expression Breakdown and Simplification** **Expression:** \[ 4x + 3y - 7 \] **Components:** - **Terms:** - **4x** - **3y** - **-7** - **Coefficients:** - **4** (coefficient of x) - **3** (coefficient of y) - **-7** (constant term) - **Variables:** - **x** - **y** - **Constants:** - **-7** **Algebraic Properties Applied:** 1. **Commutative Property:** - Order of terms can be rearranged without changing the sum. \[ 4x + 3y = 3y + 4x \] 2. **Associative Property:** - Grouping of terms doesn't affect the sum. \[ (4x + 3y) - 7 = 4x + (3y - 7) \] 3. **Distributive Property:** - Not applicable here since there's no multiplication over addition. 4. **Combining Like Terms:** - Not applicable as there are no like terms (different variables). **Conclusion:** The expression **4x + 3y - 7** is already in its simplest form.

Solución

Sure! Let’s create a visual representation of an algebraic expression, label each of its parts (constant, coefficient, term, variable), and explain how algebraic properties can be applied to simplify it. We'll use the algebraic expression: **\[ 4x + 3y - 7 \]** Below is a text-based artwork illustrating each component: ``` +-----------------+-----------------+-----------------+ | 4x | 3y | -7 | +-----------------+-----------------+-----------------+ | Term: 4x | Term: 3y | Term: -7 | | Coefficient:4 | Coefficient:3 | Constant: -7 | | Variable: x | Variable: y | | +-----------------+-----------------+-----------------+ ``` ### **Component Breakdown** 1. **Terms:** - **4x**, **3y**, and **-7** are all terms in the expression. A term can be a constant, a variable, or a combination of both. 2. **Coefficients:** - **4** is the coefficient of **x**. - **3** is the coefficient of **y**. - **-7** is a constant term (it doesn’t have a variable, so it's its own coefficient). 3. **Variables:** - **x** and **y** are variables representing unknown values. 4. **Constants:** - **-7** is a constant because it’s a fixed number without a variable. ### **Applying Algebraic Properties to Simplify** Even though the expression **4x + 3y - 7** is already simplified, let's explore how algebraic properties help in simplifying expressions in general. 1. **Commutative Property:** - **Addition:** The order of adding terms doesn't matter. \[ 4x + 3y = 3y + 4x \] - **Useful For:** Rearranging terms to group like terms together. 2. **Associative Property:** - **Addition:** How terms are grouped doesn't affect the sum. \[ (4x + 3y) - 7 = 4x + (3y - 7) \] - **Useful For:** Simplifying expressions by grouping terms in a convenient way. 3. **Distributive Property:** - Distributes multiplication over addition or subtraction. \[ a(b + c) = ab + ac \] - **Example:** Simplifying \( 2(x + 3) \) \[ 2(x + 3) = 2x + 6 \] - **Useful For:** Expanding expressions or factoring. 4. **Combining Like Terms:** - **Like Terms:** Terms that have the same variable raised to the same power. - **Example:** Simplify \( 2x + 5x \) \[ 2x + 5x = 7x \] - **In Our Expression:** - **4x** and **3y** are not like terms (different variables). - **-7** is a constant and has no like term in this expression. - Therefore, **4x + 3y - 7** is already simplified. ### **Visualization Summary** ``` Expression: 4x + 3y - 7 +-----------------+-----------------+-----------------+ | 4x | 3y | -7 | +-----------------+-----------------+-----------------+ |Term: 4x |Term: 3y |Term: -7 | |Coefficient: 4x |Coefficient: 3y |Constant: -7 | |Variable: x |Variable: y | | +-----------------+-----------------+-----------------+ Algebraic Properties Applied: 1. Commutative Property (if rearranging needed) 2. Associative Property (for grouping) 3. Distributive Property (if expanding or factoring) 4. Combining Like Terms (not applicable here) ``` ### **Conclusion** By breaking down the expression **4x + 3y - 7** into its components—terms, coefficients, variables, and constants—we can clearly see how each part functions within the expression. Understanding and labeling these parts is crucial when applying algebraic properties to simplify more complex expressions. In this case, since there are no like terms to combine and no need for distribution, the expression is already in its simplest form.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Imagine a vibrant garden, where each colorful flower represents a different part of an algebraic expression! The bright sunflower stands tall as a constant, symbolizing a fixed value like 5. Surrounding it, you’ll find flowers of varying heights and colors representing coefficients: the blue tulip with a label of 3 signifies a coefficient in the term 3x. The winding vines that twist around the garden represent variables, like x and y, showing they can change and grow! Lastly, each grouping of flowers (terms) showcases how they combine to create the full expression, emphasizing that when you simplify, you’re essentially grouping like terms to make the equation more manageable. To simplify an expression, remember this handy principle: combine like terms! For example, in 3x + 5 + 2x, gather the x's together (3x + 2x = 5x) and add the constant separately (5), resulting in 5x + 5. Be cautious, though! A common rookie mistake is trying to combine different types—like mixing constants with variables. Keep your flowers (terms) organized, and your garden (expression) will flourish beautifully!

preguntas relacionadas

Latest Arts Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad