Pregunta
upstudy study bank question image url

Kevin asked his trainee, Anna, to help call some of his clients to sell a newly-issued municipal bond. If he had to call all of the clients himself, it would take Kevin 6 hours to complete the job. If Anna alone were to call the clients, it would take her 9 hours. Working together, how long will it take Kevin and Anna to call all of the clients? a.) 3.0 hours b.) 3.6 hours c.) 2.8 hours d.) 4.5 hours

Ask by Best Adkins. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

It will take Kevin and Anna 3.6 hours to call all the clients together.

Solución

To determine how long it will take Kevin and Anna to complete the job together, we can use the concept of work rates. 1. **Calculate Individual Work Rates:** - **Kevin's work rate:** He can complete the job in 6 hours, so his work rate is \( \frac{1}{6} \) of the job per hour. - **Anna's work rate:** She can complete the job in 9 hours, so her work rate is \( \frac{1}{9} \) of the job per hour. 2. **Combine Their Work Rates:** - Together, their combined work rate is: \[ \frac{1}{6} + \frac{1}{9} = \frac{3}{18} + \frac{2}{18} = \frac{5}{18} \text{ of the job per hour} \] 3. **Calculate the Time to Complete the Job Together:** - If their combined work rate is \( \frac{5}{18} \) of the job per hour, the time \( T \) to complete the job is: \[ T = \frac{1}{\frac{5}{18}} = \frac{18}{5} = 3.6 \text{ hours} \] **Answer:** **b.) 3.6 hours**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To figure out how long it will take Kevin and Anna to call all of the clients together, we first need to determine their individual rates of work. Kevin can complete the job in 6 hours, giving him a rate of \( \frac{1}{6} \) of the job per hour, while Anna's rate is \( \frac{1}{9} \) of the job per hour. Working together, their combined rate will be \( \frac{1}{6} + \frac{1}{9} \). Finding a common denominator (which is 18), we get: \[ \frac{3}{18} + \frac{2}{18} = \frac{5}{18} \] This means together, they can call \( \frac{5}{18} \) of the clients in one hour. To find the total time (T) taken to complete the job, we set up the equation: \[ \frac{5}{18} T = 1 \Rightarrow T = \frac{18}{5} = 3.6 \text{ hours}. \] Thus, the correct answer is **b.) 3.6 hours**. Did you know that teamwork can significantly enhance productivity? Just like in our scenario, Kevin and Anna's combined effort showcases the power of collaboration! When individuals pool their skills, jobs that seem daunting when tackled alone can become manageable—and even fun! Speaking of teamwork, this scenario is a classic in the realm of work rates, often popping up in various real-world situations. From construction teams to sales efforts like Kevin and Anna’s, the principles remain the same. Whether you’re dividing tasks among workers or planning a group study session, understanding how to calculate combined work rates is essential for efficiency!

Latest Pre Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad