Pregunta
upstudy study bank question image url

2. Using Green's theorem find the value of \( \oint_{\boldsymbol{c}} \boldsymbol{F} . d r \) Where \( \boldsymbol{F}(x, y)= \) \( \left(2 e^{-5 x}-y^{2}\right) \boldsymbol{i}+\left(y^{3}+2 x^{2}\right) \boldsymbol{j} \) and C is the closed circle with parametric equations \( x=4 \operatorname{cost} \), and \( \boldsymbol{y}=4 \operatorname{sint} \).

Ask by Gibson Clark. in Bangladesh
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The value of the line integral \( \oint_{\boldsymbol{C}} \boldsymbol{F} \cdot d\boldsymbol{r} \) is **0**.

Solución

To evaluate the line integral \( \oint_{\boldsymbol{C}} \boldsymbol{F} \cdot d\boldsymbol{r} \) using Green's Theorem, follow these steps: ### Given: - **Vector Field**: \( \boldsymbol{F}(x, y) = \left(2 e^{-5 x} - y^{2}\right) \boldsymbol{i} + \left(y^{3} + 2 x^{2}\right) \boldsymbol{j} \) - **Curve \( \boldsymbol{C} \)**: A closed circle with parametric equations \( x = 4 \cos t \), \( y = 4 \sin t \) ### Green's Theorem: Green's Theorem relates a line integral around a simple closed curve \( \boldsymbol{C} \) to a double integral over the region \( D \) enclosed by \( \boldsymbol{C} \): \[ \oint_{\boldsymbol{C}} \boldsymbol{F} \cdot d\boldsymbol{r} = \iint_{D} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx\, dy \] where \( \boldsymbol{F} = P \boldsymbol{i} + Q \boldsymbol{j} \). ### Compute Partial Derivatives: Identify \( P \) and \( Q \) from \( \boldsymbol{F} \): \[ P = 2 e^{-5 x} - y^{2}, \quad Q = y^{3} + 2 x^{2} \] Calculate the necessary partial derivatives: \[ \frac{\partial Q}{\partial x} = 4x \] \[ \frac{\partial P}{\partial y} = -2y \] So, \[ \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 4x + 2y \] ### Set Up the Double Integral: The region \( D \) is a disk of radius 4 centered at the origin. It's convenient to use polar coordinates for this integral: \[ \iint_{D} (4x + 2y) \, dx\, dy \] Convert to polar coordinates where \( x = r \cos \theta \) and \( y = r \sin \theta \): \[ 4x + 2y = 4r \cos \theta + 2r \sin \theta \] The area element \( dx\, dy = r \, dr\, d\theta \). Thus, the integral becomes: \[ \int_{0}^{4} \int_{0}^{2\pi} \left(4r \cos \theta + 2r \sin \theta\right) r \, d\theta\, dr = \int_{0}^{4} \int_{0}^{2\pi} \left(4r^{2} \cos \theta + 2r^{2} \sin \theta\right) d\theta\, dr \] ### Evaluate the Integral: Notice that both integrals of \( \cos \theta \) and \( \sin \theta \) over \( 0 \) to \( 2\pi \) are zero: \[ \int_{0}^{2\pi} \cos \theta \, d\theta = 0, \quad \int_{0}^{2\pi} \sin \theta \, d\theta = 0 \] Therefore: \[ \oint_{\boldsymbol{C}} \boldsymbol{F} \cdot d\boldsymbol{r} = 0 \] ### Conclusion: The value of the line integral around the closed circle \( \boldsymbol{C} \) is **zero**. **Answer:** 0

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the value of \( \oint_{\boldsymbol{c}} \boldsymbol{F} \cdot d\mathbf{r} \) using Green's theorem, you start by calculating the components of the vector field \( \boldsymbol{F} \) and then apply the theorem that relates a line integral around a simple closed curve to a double integral over the region it encloses. First, define \( P(x, y) = 2 e^{-5x} - y^2 \) and \( Q(x, y) = y^3 + 2x^2 \). Green's theorem states that: \[ \oint_{\boldsymbol{C}} P \, dx + Q \, dy = \iint_{R} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA \] Next, calculate the partial derivatives: \(\frac{\partial Q}{\partial x} = 4x\) \(\frac{\partial P}{\partial y} = -2y\) Then, we find: \[ \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 4x + 2y \] Now, find the area \( R \) which is enclosed by the circle defined by \( x = 4\cos(t) \) and \( y = 4\sin(t) \) for \( t \) from \( 0 \) to \( 2\pi \). The region \( R \) is a circle with radius 4, so the limits for the double integral will be circular, often suited for polar coordinates. In polar coordinates, we have \( x = r\cos(\theta) \) and \( y = r\sin(\theta) \). In the integral, we use the Jacobian \( r \) for polar coordinates to convert to a double integral: \[ \iint_{R} (4x + 2y) \, dA = \int_0^{2\pi} \int_0^4 \left(4(r\cos(\theta)) + 2(r\sin(\theta))\right) r \, dr \, d\theta \] Calculating this integral gives: \[ = \int_0^{2\pi} \int_0^4 (4r^2 \cos(\theta) + 2r^2 \sin(\theta)) \, dr \, d\theta \] The inner integral over \( r \) becomes: \[ = \int_0^{2\pi} \left[ \frac{4r^3}{3} \cos(\theta) + \frac{2r^3}{3} \sin(\theta) \right]_0^4 \, d\theta \] Calculating this yields: \[ = \int_0^{2\pi} \left( \frac{4(64)}{3} \cos(\theta) + \frac{2(64)}{3} \sin(\theta) \right) \, d\theta \] Thus, we have: \[ = \frac{256}{3} \left(\int_0^{2\pi} \cos(\theta) \, d\theta + \int_0^{2\pi} \sin(\theta) \, d\theta \right) = \frac{256}{3} (0 + 0) = 0 \] Therefore, the value of \( \oint_{\boldsymbol{c}} \boldsymbol{F} \cdot d\mathbf{r} \) is \( 0 \).

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad