2. Using Green's theorem find the value of \( \oint_{\boldsymbol{c}} \boldsymbol{F} . d r \) Where \( \boldsymbol{F}(x, y)= \) \( \left(2 e^{-5 x}-y^{2}\right) \boldsymbol{i}+\left(y^{3}+2 x^{2}\right) \boldsymbol{j} \) and C is the closed circle with parametric equations \( x=4 \operatorname{cost} \), and \( \boldsymbol{y}=4 \operatorname{sint} \).
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find the value of \( \oint_{\boldsymbol{c}} \boldsymbol{F} \cdot d\mathbf{r} \) using Green's theorem, you start by calculating the components of the vector field \( \boldsymbol{F} \) and then apply the theorem that relates a line integral around a simple closed curve to a double integral over the region it encloses. First, define \( P(x, y) = 2 e^{-5x} - y^2 \) and \( Q(x, y) = y^3 + 2x^2 \). Green's theorem states that: \[ \oint_{\boldsymbol{C}} P \, dx + Q \, dy = \iint_{R} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA \] Next, calculate the partial derivatives: \(\frac{\partial Q}{\partial x} = 4x\) \(\frac{\partial P}{\partial y} = -2y\) Then, we find: \[ \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 4x + 2y \] Now, find the area \( R \) which is enclosed by the circle defined by \( x = 4\cos(t) \) and \( y = 4\sin(t) \) for \( t \) from \( 0 \) to \( 2\pi \). The region \( R \) is a circle with radius 4, so the limits for the double integral will be circular, often suited for polar coordinates. In polar coordinates, we have \( x = r\cos(\theta) \) and \( y = r\sin(\theta) \). In the integral, we use the Jacobian \( r \) for polar coordinates to convert to a double integral: \[ \iint_{R} (4x + 2y) \, dA = \int_0^{2\pi} \int_0^4 \left(4(r\cos(\theta)) + 2(r\sin(\theta))\right) r \, dr \, d\theta \] Calculating this integral gives: \[ = \int_0^{2\pi} \int_0^4 (4r^2 \cos(\theta) + 2r^2 \sin(\theta)) \, dr \, d\theta \] The inner integral over \( r \) becomes: \[ = \int_0^{2\pi} \left[ \frac{4r^3}{3} \cos(\theta) + \frac{2r^3}{3} \sin(\theta) \right]_0^4 \, d\theta \] Calculating this yields: \[ = \int_0^{2\pi} \left( \frac{4(64)}{3} \cos(\theta) + \frac{2(64)}{3} \sin(\theta) \right) \, d\theta \] Thus, we have: \[ = \frac{256}{3} \left(\int_0^{2\pi} \cos(\theta) \, d\theta + \int_0^{2\pi} \sin(\theta) \, d\theta \right) = \frac{256}{3} (0 + 0) = 0 \] Therefore, the value of \( \oint_{\boldsymbol{c}} \boldsymbol{F} \cdot d\mathbf{r} \) is \( 0 \).