Pregunta
upstudy study bank question image url

Solve the rational inequality and graph the solution set on a real number line. Express the solution set in interval notation. \( \frac{17 x-4}{5 x-2} \leq 4 \)

Ask by Rowe Boyd. in the United States
Dec 18,2024

Solución de tutoría real

Respuesta verificada por el tutor

Responder

All real numbers less than 2⁄5 or greater than or equal to 4⁄3 satisfy the inequality. In interval notation, the solution is ( –∞, 2/5 ) ∪ [ 4/3, ∞ ).

Solución

To solve the rational inequality: \[ \frac{17x - 4}{5x - 2} \leq 4 \] **Step 1: Bring all terms to one side** \[ \frac{17x - 4}{5x - 2} - 4 \leq 0 \] **Step 2: Combine the terms over a common denominator** \[ \frac{17x - 4 - 4(5x - 2)}{5x - 2} \leq 0 \] \[ \frac{17x - 4 - 20x + 8}{5x - 2} \leq 0 \] \[ \frac{-3x + 4}{5x - 2} \leq 0 \] **Step 3: Identify critical points** - **Numerator zero:** \(-3x + 4 = 0 \Rightarrow x = \frac{4}{3}\) - **Denominator zero:** \(5x - 2 = 0 \Rightarrow x = \frac{2}{5}\) (This point is excluded from the solution as it makes the denominator zero.) **Step 4: Determine intervals** The critical points divide the real number line into three intervals: 1. \((-∞, \frac{2}{5})\) 2. \((\frac{2}{5}, \frac{4}{3})\) 3. \((\frac{4}{3}, ∞)\) **Step 5: Test each interval** 1. **For \(x < \frac{2}{5}\) (e.g., \(x = 0\)):** \[ \frac{-3(0) + 4}{5(0) - 2} = \frac{4}{-2} = -2 \leq 0 \quad \text{(True)} \] 2. **For \(\frac{2}{5} < x < \frac{4}{3}\) (e.g., \(x = 1\)):** \[ \frac{-3(1) + 4}{5(1) - 2} = \frac{1}{3} > 0 \quad \text{(False)} \] 3. **For \(x > \frac{4}{3}\) (e.g., \(x = 2\)):** \[ \frac{-3(2) + 4}{5(2) - 2} = \frac{-2}{8} = -\frac{1}{4} \leq 0 \quad \text{(True)} \] **Step 6: Compile the solution** The inequality holds for: - \(x < \frac{2}{5}\) - \(x \geq \frac{4}{3}\) **Final Answer in Interval Notation:** \[ (-\infty,\ \tfrac{2}{5})\ \cup\ [\tfrac{4}{3},\ \infty) \] **Graph:** - A number line with: - An open circle at \(x = \frac{2}{5}\) (excluded). - A closed circle at \(x = \frac{4}{3}\) (included). - Shaded regions to the left of \(\frac{2}{5}\) and to the right of \(\frac{4}{3}\). --- **Answer:** After simplifying, all real numbers below 2⁄5 or at least 4⁄3 satisfy the inequality. In interval notation, ( –∞, 2/5 ) ∪ [ 4/3, ∞ ) A number line graph shows an open circle at 2⁄5 and shading left of it, a closed circle at 4⁄3, and shading to the right of 4⁄3.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the inequality \( \frac{17x - 4}{5x - 2} \leq 4 \), start by moving all terms to one side: \[ \frac{17x - 4}{5x - 2} - 4 \leq 0 \] Next, combine the terms: \[ \frac{17x - 4 - 4(5x - 2)}{5x - 2} \leq 0 \] This simplifies to: \[ \frac{17x - 4 - 20x + 8}{5x - 2} \leq 0 \] Further simplification gives: \[ \frac{-3x + 4}{5x - 2} \leq 0 \] Now, identify critical points by setting the numerator and denominator to zero: 1. \(-3x + 4 = 0\) ⇒ \(x = \frac{4}{3}\) 2. \(5x - 2 = 0\) ⇒ \(x = \frac{2}{5}\) These points, \(x = \frac{2}{5}\) and \(x = \frac{4}{3}\), divide the number line into intervals that can be tested: - For \(x < \frac{2}{5}\) - For \(\frac{2}{5} < x < \frac{4}{3}\) - For \(x > \frac{4}{3}\) Choose test points in each interval (\(x = 0\), \(x = 1\), \(x = 2\)): 1. Test \(x = 0\): \(\frac{-3(0) + 4}{5(0) - 2} = \frac{4}{-2} = -2\) (Negative) 2. Test \(x = 1\): \(\frac{-3(1) + 4}{5(1) - 2} = \frac{1}{3}\) (Positive) 3. Test \(x = 2\): \(\frac{-3(2) + 4}{5(2) - 2} = \frac{-2}{8} = -\frac{1}{4}\) (Negative) The inequality holds where \(\frac{-3x + 4}{5x - 2} \leq 0\), which includes the intervals \( (-\infty, \frac{2}{5})\) and \((\frac{4}{3}, \infty)\). The critical points need to be checked for inclusion: \(x = \frac{4}{3}\) is included because the numerator is zero. Thus, the solution set in interval notation is: \[ (-\infty, \frac{2}{5}) \cup [\frac{4}{3}, \infty) \] To graph this solution set on a number line, shade the regions corresponding to \( (-\infty, \frac{2}{5}) \) with an open circle at \(\frac{2}{5}\) to indicate it is not included, and shade from \(\frac{4}{3}\) to infinity with a solid circle at \(\frac{4}{3}\) to show it is included.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad